Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (10): 2128-2136    DOI: 10.3785/j.issn.1008-973X.2024.10.017
土木工程、交通工程     
纤维改性电磁吸波集料混凝土的吸波特性和机械性能
朱毓豪(),杨朝山,陈辉国*(),穆锐,曾超,任俊儒,雷屹欣
陆军勤务学院,重庆 401331
Wave absorption and mechanical properties of fiber-modified electromagnetic wave absorbing aggregate concrete
Yuhao ZHU(),Chaoshan YANG,Huiguo CHEN*(),Rui MU,Chao ZENG,Junru REN,Yixin LEI
Army Logistics Academy, Chongqing 401331, China
 全文: PDF(1656 KB)   HTML
摘要:

普通混凝土电磁防护能力弱,传统水泥基吸波材料力学性能不足、耐久性差,为此提出电磁吸波陶粒和纤维组分结合的混凝土设计方法. 将碳纤维(CF)、玄武岩纤维(BF)和聚丙烯纤维(PF)作为增韧和改善混凝土电磁参数的材料,在不同纤维种类和体积掺量下,通过实验研究纤维改性电磁吸波集料混凝土的抗压强度、劈裂抗拉强度、抗折强度、抗冻性能等机械性能. 实验结果表明,3种纤维均改善了电磁吸波集料混凝土的吸波特性,特别是在高频率Ku波段(12~18 GHz),当反射率小于?7 dB时,宽度大幅拓宽,反射率峰值下降明显. BF和PF显著提升了电磁吸波集料混凝土的抗压和劈裂抗拉强度,BF对早期强度贡献较大,PF在各龄期持续优化强度. 3种纤维均使电磁吸波集料混凝土抗折强度较基础组提高超过50%,3种纤维均优化了电磁吸波集料混凝土抗冻性能. 试件经历150次冻融循环后,较基础组减少质量损失均超过50%,相对动弹性模量提升了8%~24%.

关键词: 纤维改性电磁吸波集料混凝土吸波特性机械性能冻融循环    
Abstract:

Aiming at the problems such as weak electromagnetic protection ability of ordinary concrete, insufficient mechanical properties and poor durability of traditional cement-based wave absorbing materials, a new concrete design method was proposed by combining electromagnetic wave absorbing ceramsite and functional fiber components. Carbon fiber (CF), basalt fiber (BF) and polypropylene fiber (PF) were used to toughen and optimize the electromagnetic parameters of the concrete. The electromagnetic wave absorption and the mechanical properties such as compressive strength, splitting tensile strength, flexural strength and frost resistance of electromagnetic wave absorbing aggregate concrete under different fiber types and volume contents were studied through experiments. Experimental results showed that the wave absorption of electromagnetic wave absorbing aggregate concrete was improved by adding these three fibers, especially in the higher frequency Ku band (12?18 GHz), where the bandwidth broadened greatly when the reflectivity is less than ?7 dB, and the peak reflectivity decreased significantly. The compressive and splitting tensile strength of the electromagnetic wave absorbing aggregate concrete was increased distinctly by BF and PF, BF improved the early mechanical strength greatly, and PF optimized the mechanical strength at every age. All three fibers increased the flexural strength of electromagnetic wave absorbing aggregate concrete by more than 50% with the base group, and the frost resistance of the concrete was optimized by the fibers also. After 150 freeze-thaw cycles, the specimens were reduced by more than 50% compared with the base group, and the relative dynamic elastic moduli were increased by 8%?24%.

Key words: fiber-modified    electromagnetic wave absorbing aggregate concrete    wave absorption    mechanical property    freeze-thaw cycle
收稿日期: 2023-08-11 出版日期: 2024-09-27
CLC:  TU 599  
基金资助: 军队后勤科研计划(BLJ22J030);重庆市研究生科研创新项目(CYS21530).
通讯作者: 陈辉国     E-mail: 444935112@qq.com;chenhg_mail@163.com
作者简介: 朱毓豪(1998—),男,博士生,从事防灾减灾与防护工程研究. orcid.org/0009-0004-5509-6908. E-mail:444935112@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
朱毓豪
杨朝山
陈辉国
穆锐
曾超
任俊儒
雷屹欣

引用本文:

朱毓豪,杨朝山,陈辉国,穆锐,曾超,任俊儒,雷屹欣. 纤维改性电磁吸波集料混凝土的吸波特性和机械性能[J]. 浙江大学学报(工学版), 2024, 58(10): 2128-2136.

Yuhao ZHU,Chaoshan YANG,Huiguo CHEN,Rui MU,Chao ZENG,Junru REN,Yixin LEI. Wave absorption and mechanical properties of fiber-modified electromagnetic wave absorbing aggregate concrete. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2128-2136.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.017        https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2128

图 1  电磁吸波陶粒的制备流程
纤维ρ/(g·cm?3L/mmD/μmσt/MPaE/GPaε/%
CF1.75974900.0230.02.1
BF2.659174100.0100.02.6
PF0.91918556.94.119.0
表 1  不同纤维的物理性能
图 2  不同实验的试样
粗集料水泥基中复掺吸波剂R/dBBW7/GHz
碎石[7]?6.2~?4.00
10%铁氧体陶粒[3]?9.1~?8.110
30%TiO2陶粒[4]?8.0~?4.03.9
30%TiO2陶粒[4]wB(TiO2)=3%?9.0~?5.84.8
15%铁氧体陶粒[7]?10.0~?4.86.5
15%铁氧体陶粒[7]φB(CF)=0.2%?13.6~?4.66.5
表 2  常见电磁吸波集料混凝土的吸波性能
图 3  不同电磁吸波集料混凝土试样的反射率曲线
组别Rm/dBBW7/GHzBW10/GHz
无纤维?10.006.50.50
NBV0.4?14.149.81.70
NPV0.6?20.107.81.45
NCV0.2?13.646.03.10
表 3  不同电磁吸波集料混凝土试样的吸波性能对比
图 4  不同电磁吸波集料混凝土试样的相对抗压强度
图 5  不同电磁吸波集料混凝土试样的劈裂抗拉强度
组别ff/MPa$\overline f_{\mathrm{f}} $/MPa
试件1试件2试件3
无纤维4.604.784.804.73
NCV0.4Tb6.807.007.707.17
NCV0.8Tb7.347.508.157.66
NBV0.4Tb7.727.938.207.95
NBV0.8Tb8.428.559.088.68
NPV0.4Tb6.808.088.388.13
NPV0.8Tb7.348.689.308.83
表 4  不同电磁吸波集料混凝土试件的抗折强度
图 6  试件的典型破坏形态
图 7  纤维组分电磁吸波集料混凝土破坏断面的微观结构
图 8  电磁吸波集料混凝土抗冻指标随冻融循环的变化
图 9  电磁吸波集料混凝土150次冻融循环后的外观形态
1 张国栋. 基于阻抗匹配原理的水泥基吸波材料制备及性能研究[D]. 济南: 济南大学, 2015.
ZHANG Guodong. Preparation and performance studies of cementitious wave absorbing materials based on impedance matching [D]. Jinan: University of Jinan, 2015.
2 何永佳, 肖培浩, 肖静, 等 吸附钡铁氧体的多孔陶粒吸波材料制备及其性能[J]. 材料科学与工程学报, 2017, 35 (6): 861- 865
HE Yongjia, XIAO Peihao, XIAO Jing, et al Preparation and performances of porous electro-magnetic wave absorbing ceramisite coated with barium ferrite[J]. Journal of Materials Science and Engineering, 2017, 35 (6): 861- 865
3 HE Y, LI G, LI H, et al Ceramsite containing iron oxide and its use as functional aggregate in microwave absorbing cement-based materials[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2018, 33 (1): 133- 138
doi: 10.1007/s11595-018-1797-9
4 何柳, 平兵, 吕林女, 等 复掺纳米TiO2吸波剂和吸波功能集料的电磁吸波混凝土[J]. 功能材料, 2018, 49 (1): 1173- 1177
HE Liu, PING Bing, LYU Linnyu, et al Electromagnetic wave absorbing concrete prepared by combined admixture of nano TiO2 and electromagnetic wave absorbing functional aggregate[J]. Journal of Functional Materials, 2018, 49 (1): 1173- 1177
5 ZHANG Z, YANG C, CHEN H, et al The electromagnetic wave absorption performance and mechanical properties of cement-based composite material mixed with functional aggregates with high Fe2O3 and SiC[J]. Journal of Composite and Advanced Materials, 2021, 31 (4): 249- 255
6 黄晓寒, 程华, 郑子云, 等 含铁氧体陶粒骨料电磁波损耗模型与性能研究[J]. 材料导报, 2021, 35 (22): 22027- 22032
HUANG Xiaohan, CHEN Hua, ZHENG Ziyun, et al Research on electromagnetic loss model and property of ferrite-containing ceramsite aggregate[J]. Materials Reports, 2021, 35 (22): 22027- 22032
doi: 10.11896/cldb.21020060
7 朱毓豪, 任俊儒, 杨朝山, 等 掺加碳纤维的Fe2O3功能集料电磁防护混凝土[J]. 合成纤维, 2022, 51 (4): 50- 57
ZHU Yuhao, REN Junru, YANG Chaoshan, et al Electromagnetic protective concrete with Fe2O3 functional aggregate mixed with carbon fiber[J]. Synthetic Fiber in China, 2022, 51 (4): 50- 57
doi: 10.3969/j.issn.1001-7054.2022.4.hcxw202204011
8 李为民, 许金余 玄武岩纤维对混凝土的增强和增韧效应[J]. 硅酸盐学报, 2008, 36 (4): 476- 481
LI Weimin, XU Jinyu Strengthening and toughening in basalt fiber-reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2008, 36 (4): 476- 481
doi: 10.3321/j.issn:0454-5648.2008.04.009
9 ADESINA A, DAS S Influence of various parameters on properties of basalt fiber-reinforced cementitious composites[J]. ACI Materials Journal, 2022, 119 (6): 5- 17
10 辛明, 王学志, 佟欢 纤维混凝土耐久性能研究综述[J]. 辽宁工业大学学报: 自然科学版, 2020, 40 (1): 36- 39
XIN Ming, WANG Xuezhi, TONG Huan Summary of research on durability of fiber concrete[J]. Journal of Liaoning University of Technology: Natural Science Edition, 2020, 40 (1): 36- 39
11 ALI B, RAZA S S, HUSSAIN I, et al Influence of different fibers on mechanical and durability performance of concrete with silica fume[J]. Structural Concrete, 2021, 22 (1): 318- 333
doi: 10.1002/suco.201900422
12 XIE S, WANG J, WANG W, et al Electromagnetic wave absorption properties of cement based composites using helical carbon fibers as absorbent[J]. Materials Research Express, 2018, 5 (2): 025605
doi: 10.1088/2053-1591/aaae51
13 NARAYANAN S, ZHANG Y, ASLANI F Prediction models of shielding effectiveness of carbon fibre reinforced cement-based composites against electromagnetic interference[J]. Sensors, 2023, 23 (4): 2084
doi: 10.3390/s23042084
14 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 第2版. 北京: 化学工业出版社, 2014.
15 CHEN J, LIANG X, ZHEN J, et al Modulating dielectric loss of mesoporous carbon fibers with radar cross section reduction performance via computer simulation technology[J]. Inorganic Chemistry Frontiers, 2021, 8 (3): 758- 765
doi: 10.1039/D0QI01237H
16 张月芳. 纤维增强水泥基电磁波吸收材料制备及性能[D]. 大连: 大连理工大学, 2018.
ZHANG Yuefang. Preparation and performance of fiber reinforced cement-based electromagnetic wave absorbing materials [D]. Dalin: Dalian University of Technology, 2018.
17 DENG G, YANG Y, ZHOU Q, et al. Lightweight and broadband electromagnetic wave absorbing foamed cement-based composites incorporated with hybrid dielectric fibers [J]. Construction and Building Materials , 2022, 327: 126931.
18 姚勇, 何跃川, 陈中武 玄武岩纤维及其复合材料的微波介电性能[J]. 玻璃钢/复合材料, 2016, (5): 65- 67
YAO Yong, HE Yuechuan, CHEN Zhongwu The microwave dielectric properties of basalt fibers and CBF-EP composites[J]. Fiber Reinforced Plastics/Composites, 2016, (5): 65- 67
19 张月芳, 郝万军, 刘顺华 频率选择表面对PET水泥基材料吸波性能的影响[J]. 建筑材料学报, 2018, 21 (1): 117- 123
ZHANG Yuefang, HAO Wanjun, LIU Shunhua Effect of frequency selective surface on microwave absorbing properties of PET cement-based materials[J]. Journal of Building Materials, 2018, 21 (1): 117- 123
doi: 10.3969/j.issn.1007-9629.2018.01.019
20 递春 高性能玄武岩纤维的性能及应用[J]. 上海纺织科技, 2014, 42 (1): 12- 14
DI Chun The property and its application of high performance basalt fiber[J]. Shanghai Textile Science and Technology, 2014, 42 (1): 12- 14
21 陆振乾, 杨雅茹, 荀勇 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42 (4): 177- 183
LU Zhenqian, YANG Yaru, XUN Yong Research review of fiber effect on properties of cement-based composite[J]. Journal of Textile Research, 2021, 42 (4): 177- 183
22 李德春, 许冲, 崔振东, 等 基于正交试验的纤维混凝土力学性能影响研究[J]. 混凝土, 2022, (6): 29- 32
LI Dechun, XU Chong, CUI Zhendong, et al Influence of fiber reinforced concrete on mechanical properties based on orthogonal test[J]. Concrete, 2022, (6): 29- 32
doi: 10.3969/j.issn.1002-3550.2022.06.006
23 WU H, QIN X, HUANG X, et al Engineering, mechanical and dynamic properties of basalt fiber reinforced concrete[J]. Materials, 2023, 16 (2): 623
doi: 10.3390/ma16020623
24 王激扬, 马卫强, 胡志华 PE纤维掺量对水泥基复合材料力学性能的影响[J]. 浙江大学学报: 工学版, 2017, 51 (11): 2130- 2135
WANG Jiyang, MA Weiqiang, HU Zhihua Effect of PE fiber content on mechanical behavior of cementitious composite[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (11): 2130- 2135
[1] 舒佳军,邓正定,伍冰妮,管华栋,曹茂森. 冻融循环作用下倾倒式危岩体稳定性劣化模型[J]. 浙江大学学报(工学版), 2022, 56(9): 1714-1723.
[2] 黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.
[3] 丁智, 洪其浩, 魏新江, 张孟雅, 郑勇. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1291-1299.
[4] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[5] 武海荣, 金伟良, 延永东, 夏晋. 混凝土冻融环境区划与抗冻性寿命预测[J]. J4, 2012, 46(4): 650-657.