Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1714-1723    DOI: 10.3785/j.issn.1008-973X.2022.09.004
土木工程、交通工程     
冻融循环作用下倾倒式危岩体稳定性劣化模型
舒佳军1,2(),邓正定1,2,*(),伍冰妮3,管华栋1,2,曹茂森1,2
1. 江西理工大学 江西省环境岩土与工程灾害控制重点实验室,江西 赣州 341000
2. 江西理工大学 土木与测绘工程学院,江西 赣州 341000
3. 华东交通大学 土木建筑学院,江西 南昌 330013
Stability deterioration model of toppling unstable rock mass under freeze-thaw cycle
Jia-jun SHU1,2(),Zheng-ding DENG1,2,*(),Bing-ni WU3,Hua-dong GUAN1,2,Mao-sen CAO1,2
1. Jiangxi Province Key Laboratory of Environmental Geotechnical Engineering and Hazards Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. School of Civil and Surveying and Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
3. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(1376 KB)   HTML
摘要:

为了探究冻融作用对倾倒式危岩体稳定的作用机理及长期劣化规律, 基于极限平衡理论,考虑结构面冻胀力、未贯通段抗拉强度劣化及冻结深度演化对倾覆点力矩的影响,构建倾倒式危岩体稳定性分析方法. 基于岩石冻胀理论,考虑岩石碎屑流失、微裂隙倾角、温度等参数对孔隙半径冻胀破坏的影响,建立岩石抗拉强度劣化模型并验证其合理性. 利用裂隙分布不均性修正Stephan冻结深度经验公式,得到冻融循环作用下岩石冻结深度计算方法. 结合工程算例,讨论不同敏感参数对倾倒式危岩体稳定性的影响. 结果表明:初始抗拉强度越低、孔隙率越大,危岩体稳定性劣化效果越显著;当环境温度高于263.15 K (?10 ℃)时,危岩体稳定性对温度的变化敏感,危岩体保温措施的效果显著;当碎屑流失比超过0.8时,冻融循环作用对危岩体的劣化速率明显加快,倾倒式危岩体的长期冻融劣化效应明显,控制冻胀破坏产生的碎屑流失有利于寒区危岩体保持长期稳定.

关键词: 冻融循环倾倒式危岩体冻胀力抗拉强度冻结深度碎屑流失    
Abstract:

The action mechanism and long-term deterioration law of freezing and thawing on the stability of toppling unstable rock mass were explored. Firstly, based on the limit equilibrium theory, considering the influence of the frost heave force of the structural plane and the tensile strength, freezing depth of the non-through section on the moment of the overturning point, the analysis method of stability deterioration of toppling unstable rock mass was put forward. Secondly, based on the frost heave theory of rock, considering the influence of rock debris loss, different dip angles and temperature of microfissures on pore radius’ mechanical properties, the deterioration model of rock tensile strength was constructed. Thirdly, Based on the uneven distribution of cracks, the empirical formula of Stephan freezing depth was modified, and the calculation method of rock freezing depth under freeze-thaw cycle was obtained. Finally, combined with an engineering example, the influence of different sensitive parameters on toppling unstable rock mass stability was discussed. Results showed that the lower the initial tensile strength and the higher the porosity, the more obvious the deterioration effect of the stability of unstable rock mass. When the ambient temperature was higher than 263.15 K (?10 ℃), the stability of unstable rock mass was more sensitive to the change of temperature, and the effect of thermal insulation measures for unstable rock mass in this temperature range was more significant. When the debris loss ratio was more than 0.8, the deterioration rate of unstable rock mass caused by freeze-thaw cycle was obviously accelerated, and the control of debris loss caused by frost heave failure was more conducive to the long-term stability of unstable rock mass in cold regions.

Key words: freeze-thaw cycle    toppling unstable rock mass    frost heave force    tensile strength    freezing depth    rock debris loss
收稿日期: 2021-10-24 出版日期: 2022-09-28
CLC:  TU 457  
基金资助: 江西省自然科学基金资助项目(20202BAB214025);江西省教育厅科研技术项目(GJJ190499);江西省研究生创新专项资金资助项目(XY2021-S025)
通讯作者: 邓正定     E-mail: 1317019667@qq.com;dengzhengding@126.com
作者简介: 舒佳军(1998—),男,硕士生,从事冻岩力学和断裂力学研究. orcid.org/0000-0003-4729-1469. E-mail: 1317019667@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
舒佳军
邓正定
伍冰妮
管华栋
曹茂森

引用本文:

舒佳军,邓正定,伍冰妮,管华栋,曹茂森. 冻融循环作用下倾倒式危岩体稳定性劣化模型[J]. 浙江大学学报(工学版), 2022, 56(9): 1714-1723.

Jia-jun SHU,Zheng-ding DENG,Bing-ni WU,Hua-dong GUAN,Mao-sen CAO. Stability deterioration model of toppling unstable rock mass under freeze-thaw cycle. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1714-1723.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.004        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1714

图 1  倾倒式危岩体计算模型
图 2  微裂隙冻胀扩径示意图
图 3  碎屑流失比拟合曲线
参数 数值 参数 数值
Er / GPa 67.3 fk0 / MPa 8.42
v 0.25 m 18
a0 / μm 50 b0 / μm 2
ω0 / % 1.13 T / K 253
q 0.793 ρ /( g·cm?3) 2.59
表 1  岩石抗拉强度劣化计算参数
图 4  岩石抗拉强度弱化试验结果与理论结果对比
图 5  倾倒式危岩体实拍图
图 6  危岩体工程算例示意图
参数 数值 参数 数值
Er / GPa 18.9 fk / MPa 0.78
v 0.24 m 18
ω0 / % 15.9 κw / % 12.4
ρd /( g·cm?3) 2.31 ρr / (g·cm?3) 2.42
T / K 263.4 ξ 0.337 5
S 86 400 K / (W·mK?1) 1.86
q 0.807 η / % 2.3
α / (°) 0 e / m 0
表 2  危岩体工程计算参数
图 7  危岩体稳定系数随冻融循环次数变化曲线
图 8  初始孔隙率对危岩体稳定性系数影响
图 9  温度对危岩体稳定性系数影响
图 10  碎屑流失比对危岩体稳定性系数影响
1 奥兰多·B·安德斯兰德, 布兰科·洛达尼. 冻土工程(原著第二版)[M]. 杨让宏, 李勇, 译. 北京: 中国建筑工业出版社, 2011.
2 徐斅祖 中国冻胀研究进展[J]. 地球科学进展, 1994, 9 (5): 13- 19
XUE Xiao-zu Progress of frost heave research in China[J]. Advances in Earth Science, 1994, 9 (5): 13- 19
3 蒲春林, 邓丽华, 王凯, 等 寒区危岩主控裂隙扩展演化机制研究[J]. 重庆师范大学学报:自然科学版, 2016, 33 (5): 158- 164
PU Chun-lin, DENG Li-hua, WANG Kai, et al The evolutionary mechanism of control fracture propagation of dangerous rock in cold region[J]. Journal of Chongqing Normal University: Natural Science, 2016, 33 (5): 158- 164
4 刘慧, 蔺江昊, 杨更社, 等 冻融循环作用下砂岩受拉损伤特性的声发射试验[J]. 采矿与安全工程学报, 2021, 38 (4): 830- 839
LIU Hui, LIN Jiang-hao, YANG Geng-she, et al Acoustic emission test on tensile damage characteristics of sandstone under freeze-thaw cycle[J]. Journal of Mining and Safety Engineering, 2021, 38 (4): 830- 839
5 周元辅, 张丹锋, 李明勇, 等 季节性冻土区黏土冻结深度预测[J]. 科学技术与工程, 2021, 21 (13): 5460- 5466
ZHOU Yuan-fu, ZHANG Dan-feng, LI Ming-yong, et al Predicted frost depth of clay in seasonally frozen ground region[J]. Science Technology and Engineering, 2021, 21 (13): 5460- 5466
doi: 10.3969/j.issn.1671-1815.2021.13.040
6 CHEN G Q, WANG Y, LI Y, et al Time-dependent damage mechanism of rock deterioration under freeze-thaw cycles linked to alpine hazards[J]. Natural Hazards, 2021, 108 (1): 635- 660
doi: 10.1007/s11069-021-04699-5
7 CHEN Y L, WU P, YU Q, et al Effects of freezing and thawing cycle on mechanical properties and stability of soft rock slope[J]. Advances in Materials Science and Engineering, 2017, 2017: 3173659
8 陈洪凯, 唐红梅, 王蓉 三峡库区危岩稳定性计算方法及应用[J]. 岩石力学与工程学报, 2004, 23 (4): 614- 619
CHEN Hong-kai, TANG Hong-mei, WANG Rong Calculation method of stability for unstable rock and application to the Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (4): 614- 619
doi: 10.3321/j.issn:1000-6915.2004.04.016
9 CHEN H K, TANG H M Method to calculate fatigue fracture life of control fissure in perilous rock[J]. Applied Mathematics and Mechanics, 2007, 28 (5): 643- 649
10 陈洪凯, 鲜学福, 唐红梅, 等 危岩稳定性分析方法[J]. 应用力学学报, 2009, 26 (2): 278- 282
CHEN Hong-kai, XIAN Xue-fu, TANG Hong-mei, et al Stability analysis method for perilous rock[J]. Chinese Journal of Applied Mechanics, 2009, 26 (2): 278- 282
11 丁王飞, 周云涛 基于主控结构面锁固段模型的危岩稳定性计算[J]. 人民长江, 2015, 46 (24): 72- 77
DING Wang-fei, ZHOU Yun-tao Analysis for unstable rock stability based on locking portion model of dominant fissure[J]. Yangtze River, 2015, 46 (24): 72- 77
12 申艳军, 杨更社, 王婷, 等 岩石内孔隙/裂隙冻胀力模型及其适用性评价[J]. 冰川冻土, 2019, 41 (1): 117- 128
SHEN Yan-jun, YANG Geng-she, WANG Ting, et al Evaluation of frost heave force models of pore/fissure in rock and their applicability[J]. Journal of Glaciology and Geocryology, 2019, 41 (1): 117- 128
13 LV Z T, XIA C C, LI Q, et al Empirical frost heave model for saturated rock under uniform and unidirectional freezing conditions[J]. Rock Mechanics and Rock Engineering, 2019, 52 (3): 955- 963
doi: 10.1007/s00603-018-1666-z
14 VLAHOU I, WORSTER M G Ice growth in a spherical cavity of a porous medium[J]. Journal of Glaciology, 2010, 56 (196): 271- 277
doi: 10.3189/002214310791968494
15 ZHOU J Z, WEI C F Ice lens induced interfacial hydraulic resistance in frost heave[J]. Cold Regions Science and Technology, 2020, 171: 102964
doi: 10.1016/j.coldregions.2019.102964
16 DERJAGUIN B V, CHURAEV N V Flow of nonfreezing water interlayers and frost heaving[J]. Cold Regions Science and Technology, 1986, 12 (1): 57- 66
doi: 10.1016/0165-232X(86)90020-0
17 REMPEL A W, WETTLAUFER J S, WORSTER M G Interfacial premelting and the thermomolecular force: thermodynamic buoyancy[J]. Physical Review Letters, 2001, 87 (8): 088501
doi: 10.1103/PhysRevLett.87.088501
18 DÖPPENSCHMIDT A, BUTT H J Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy[J]. Langmuir, 2000, 16 (16): 6709- 6714
doi: 10.1021/la990799w
19 刘红岩, 赵雨霞 冻融循环下隧道围岩冻胀力理论计算[J]. 中南大学学报:自然科学版, 2020, 51 (4): 1049- 1058
LIU Hong-yan, ZHAO Yu-xia Theoretical calculation of frost heaving pressure in tunnel surrounding rock during freeze-thaw cycles[J]. Journal of Central South University: Science and Technology, 2020, 51 (4): 1049- 1058
20 阎锡东, 刘红岩, 刑闯锋, 等 基于微裂隙变形与扩展的岩石冻融损伤本构模型研究[J]. 岩土力学, 2015, 36 (12): 3489- 3499
YAN Xi-dong, LIU Hong-yan, XING Chuang-feng, et al Constitutive model research on freezing-thawing damage of rock based on deformation and propagation of microcracks[J]. Rock and Soil Mechanics, 2015, 36 (12): 3489- 3499
21 WALDER J, HALLET B A theoretical model of the fracture of rock during freezing[J]. Geological Society of America Bulletin, 1985, 96: 336- 346
doi: 10.1130/0016-7606(1985)96<336:ATMOTF>2.0.CO;2
22 MUSKHELISHVILI N I. Some basic problems of the mathematical theory of elasticity [M]. 2nd ed. Leyden: Noordhoff International Publishing, 1977.
23 闻磊, 沈建琳, 梅松华, 等 冻融损伤岩体质量评价方法研究[J]. 矿业研究与开发, 2020, 40 (12): 57- 63
WEN Lei, SHEN Jian-lin, MEI Song-hua, et al Study on quality evaluation method of freeze-thaw damaged rock mass[J]. Mining Research and Development, 2020, 40 (12): 57- 63
24 张向东, 王浩, 敬鹏飞 基于岩石“等效损伤”探究宏观断裂规律[J]. 中国地质灾害与防治学报, 2020, 31 (3): 117- 125
ZHANG Xiang-dong, WANG Hao, JING Peng-fei Studying the macroscopic fracture rule based on rock “equivalent damage”[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31 (3): 117- 125
25 胡亚元, 王超 多节理岩体的非线性耦合损伤本构模型[J]. 煤炭学报, 2019, 44 (增1): 52- 60
HU Ya-yuan, WANG Chao Nonlinear coupling damage constitutive model for multi-jointed rock mass[J]. Journal of China Coal Society, 2019, 44 (增1): 52- 60
26 高青鹏, 曹平, 王飞, 等 压剪作用下多节理类岩试样力学性质及破坏判据[J]. 岩土力学, 2019, 40 (3): 1013- 1022
GAO Qing-peng, CAO Ping, WANG Fei, et al Mechanical properties and failure criteria of multi-joint rock-like specimens under compression-shear[J]. Rock and Soil Mechanics, 2019, 40 (3): 1013- 1022
27 CARTA J A, BUENO C, RAMÍREZ P Statistical modelling of directional wind speeds using mixtures of von Mises distributions: case study[J]. Energy Conversion and Management, 2008, 49 (5): 897- 907
doi: 10.1016/j.enconman.2007.10.017
28 ERDEM E, SHI J Comparison of bivariate distribution construction approaches for analysing wind speed and direction data[J]. Wind Energy, 2011, 14: 27- 41
doi: 10.1002/we.400
29 闻磊, 李夕兵, 苏伟 冻融循环影响下金属矿山边坡坚硬岩石物理力学性质研究[J]. 采矿与安全工程学报, 2015, 32 (4): 689- 696
WEN-Lei, LI Xi-bing, SU Wei Study of physico-mechanical characteristics of slope hard rocks of metal mine influenced by freeze-thaw cycles[J]. Journal of Mining and Safety Engineering, 2015, 32 (4): 689- 696
30 JUMIKIS A R. Thermal Geotechnics [M]. New Brunswick: Rutgers University Press, 1977.
31 王仲锦, 叶阳升, 闫宏业, 等 寒区铁路路基防冻胀设计中冻深计算方法的探讨[J]. 铁道建筑, 2013, (2): 57- 59
WANG Zhong-jin, YE Yang-sheng, YAN Hong-ye, et al Discussion on calculation method of frost depth in anti-frost heave design of railway subgrade in cold regions[J]. Railway Engineering, 2013, (2): 57- 59
32 NELSON F E, OUTCALT S I A computational method for prediction and regionalization of permafrost[J]. Arctic and Alpine Research, 1987, 19: 279- 288
doi: 10.2307/1551363
33 裴万胜. 冻土水−热−力相互作用过程及数值模拟研究[D]. 北京: 中国科学院大学, 2015: 40-52.
LIU Wan-sheng. Study of the hydro-thermal-mechanical interaction process of frozen soil and its numerical simulation [D]. Beijing: University of Chinese Academy of Sciences, 2015: 40-52.
34 王超, 王川婴, 王益腾, 等 基于孔壁光学图像的岩石孔隙结构识别与分析方法研究[J]. 岩石力学与工程学报, 2021, 40 (9): 1894- 1901
WANG Chao, WANG Chuan-ying, WANG Yi-teng, et al Research on identification and analysis method of rock pore structure based on optical images of borehole walls[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (9): 1894- 1901
35 孙利辉, 纪洪广, 杨本生 西部典型矿区弱胶结地层岩石的物理力学性能特征[J]. 煤炭学报, 2019, 44 (3): 866- 874
SUN Li-hui, JI Hong-guang, YANG Ben-sheng Physical and mechanical characteristic of rocks with weakly cemented strata in Western representative mining area[J]. Journal of China Coal Society, 2019, 44 (3): 866- 874
36 杜锋, PENG Syd S 神东矿区岩石物理力学性质变化规律研究[J]. 采矿与安全工程学报, 2019, 36 (5): 1009- 1015
DU Feng, PENG Syd S Change rule of physical and mechanical property of rock mass in Shendong mine[J]. Journal of Mining and Safety Engineering, 2019, 36 (5): 1009- 1015
[1] 黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.
[2] 丁智, 洪其浩, 魏新江, 张孟雅, 郑勇. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1291-1299.
[3] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[4] 武海荣, 金伟良, 延永东, 夏晋. 混凝土冻融环境区划与抗冻性寿命预测[J]. J4, 2012, 46(4): 650-657.
[5] 金南国 金贤玉 吴伟河 田野. 等效龄期法在混凝土早龄期温度裂缝控制中的应用[J]. J4, 2008, 42(1): 44-47.
[6] 王巧平 吴胜兴. 锈蚀钢筋力学性能数字试验研究[J]. J4, 2007, 41(1): 83-85.