Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (11): 2336-2351    DOI: 10.3785/j.issn.1008-973X.2025.11.013
交通工程、土木工程     
微生物矿化裂隙岩体加固及其应用研究进展
李作勇1(),吴创周1,*(),何稼2,成亮3,张丰收4
1. 浙江大学 海洋学院,浙江 舟山 316021
2. 河海大学 土木与交通学院,江苏 南京 210024
3. 江苏大学 环境与安全工程学院,江苏 镇江 212013
4. 同济大学 土木工程学院,上海 200092
Advance in microbial mineralization for fractured rock mass reinforcement and its application
Zuoyong LI1(),Chuangzhou WU1,*(),Jia HE2,Liang CHENG3,Fengshou ZHANG4
1. Ocean College, Zhejiang University, Zhoushan 316021, China
2. College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China
3. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
4. College of Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(3596 KB)   HTML
摘要:

为了推动微生物诱导碳酸盐沉淀(MICP)技术在裂隙岩体加固中的工程应用,介绍了该技术的主要影响因素,归纳分析典型应用实例,探讨当前面临的技术挑战. MICP技术在提高裂隙岩体强度与降低渗透性方面表现显著,其加固效果受注浆溶液、环境条件、裂隙特征及注浆工艺等因素共同影响. 结合当前研究,总结了MICP技术在二氧化碳地质封存、尾矿治理、石质文物保护及石油开采等领域的应用现状,讨论了该技术在沉积均匀性、长期稳定性和经济性方面的挑战. 未来的研究应结合室内与现场试验,优化菌株性能与注浆工艺,降低成本,并开发精确的多场耦合模型,以推动MICP技术在复杂地质条件下的实际应用.

关键词: 微生物诱导碳酸盐沉淀(MICP)裂隙岩体加固裂隙封堵注浆技术    
Abstract:

The key influencing factors were introduced, representative application cases were analyzed, and current technical challenges were discussed in order to promote the engineering application of microbially induced carbonate precipitation (MICP) for reinforcing fractured rock masses. MICP proved effective in enhancing rock strength and reducing permeability, with its performance influenced by factors such as grouting solution composition, environmental conditions, fracture characteristics, and grouting procedures. The application of MICP in CO2 geological sequestration, mine tailings remediation, stone heritage preservation, and petroleum extraction was reviewed based on recent research, while identifying challenges related to deposition uniformity, long-term stability, and economic feasibility. Future research should integrate laboratory and field experiments, optimize microbial strain performance and grouting strategies, reduce costs, and develop accurate multi-physics coupling models in order to enable practical implementation under complex geological conditions.

Key words: microbially induced carbonate precipitation (MICP)    fractured rock mass reinforcement    fracture sealing    grouting technology
收稿日期: 2024-10-25 出版日期: 2025-10-30
:  TU 472  
基金资助: 国家自然科学基金资助项目(42177141).
通讯作者: 吴创周     E-mail: lizuoyong@zju.edu.cn;ark_wu@zju.edu.cn
作者简介: 李作勇(1999—),男,博士生,从事微生物岩土材料和工程的研究. orcid.org/0009-0009-8327-1837.E-mail: lizuoyong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李作勇
吴创周
何稼
成亮
张丰收

引用本文:

李作勇,吴创周,何稼,成亮,张丰收. 微生物矿化裂隙岩体加固及其应用研究进展[J]. 浙江大学学报(工学版), 2025, 59(11): 2336-2351.

Zuoyong LI,Chuangzhou WU,Jia HE,Liang CHENG,Fengshou ZHANG. Advance in microbial mineralization for fractured rock mass reinforcement and its application. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2336-2351.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.013        https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2336

图 1  基于 MICP 的微生物矿化机理示意图
图 2  MICP封堵裂隙的影响因素
试验类型试验简述力学性能渗透性能来源
孔隙率:7.27%~19.45%采用多阶段注浆方法(含固定液),进行2~10次灌浆循环处理,一次循环后反向注入.低强度砂岩:UCS、弹性模量、脆性指数分别提高 229%、179%、177%.
高强度砂岩:UCS、弹性模量、脆性指数分别提高22%、14%、12%.
低强度和低强度砂岩渗透系数分别降低96%、99%.文献[47]
隙宽约为0.3 mm,长度为36 mm采用多阶段注浆法,注入流速为0.5 mL/min,共进行16、17次循环处理.峰值剪切强度从125 kPa提升至733 kPa.渗透系数从10?3 m/s降至10?7 m/s,下降4个数量级.文献 [48]
隙宽为0.31~0.74 mm(含分支裂隙)采用单相注浆法,注入速率为20 mL/min,总注入体积为0.5 L.主裂隙的表观愈合率均为80%~96.3%. 处理前渗透系数约为10?1 m/s,处理后降至10?4 m/s以下,降低3、4个数量级.文献 [48]
隙宽为0.60~0.70 mm,长度为40 cm采用单相注入法进行2次灌浆处理,注入速率为20 mL/min或40 mL/min.生物注浆2 d后渗透系数降低3个数量级.文献 [49]
隙宽为1 mm,长度为100 mm采用多阶段注浆方法(含固定液),进行10次灌浆循环处理.切应力增加26%~40%,剪切刚度提高70%.渗透系数从10?5 m/s降至10?7 m/s,降低2个数量级.文献 [40]
隙宽为1.0~2.5 mm,长度为100 mm
采用单相注浆法进行8次灌浆循环.未处理样本渗透系数为0.1536~0.4342 m/s,处理后降至3×10?5~5×10?5 m/s,降低4个数量级.文献 [33]
裂隙长50 mm采用多阶段注浆方法(含固定液),共进行15次灌浆循环,注浆速率为0.5 mL/min.单位时间渗流量下降80.31%~90.04%,渗透系数降至10?8m/s数量级.文献 [44]
节理面倾角为0°~75°采用单相注浆法方法,每 24 h注入 加固溶液20 mL,共加固20 d.MICP 修复后样品的偏应力比修复前增加了50%.文献 [38]
岩石裂隙:地下25 m深,倾角约为25°采用多阶段注浆方法(含固定液),结合COMSOL Multiphysics数值
建模.
注入点附近导水系数降低 >99%,2 m距离处降低约 35%文献[3]
井筒裂隙:
井深为340.8 m
采用多阶段注浆方法(含固定液),注入25次尿素/钙溶液和10次微生物悬液.15 min内注入压力从处理前的42%衰减至18%.注水速率从0.29 m3/h 降至0.011 m3/h.文献[50]
表 1  MICP 技术在裂隙岩体加固中的力学与渗透性能表现
图 3  超声波技术在裂隙砂浆样品MICP修复过程中的应用[54]
图 4  电阻率层析成像技术在砂柱样品MICP加固过程中的应用[55]
图 5  微生物矿化在二氧化碳封存中的应用
图 6  微生物矿化在矿山尾矿治理中的应用
图 7  微生物矿化在文物保护中的应用
图 8  微生物矿化在石油开采中的应用
1 WU C Z, CHU J, WU S F, et al 3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction[J]. Engineering Geology, 2019, 249: 23- 30
doi: 10.1016/j.enggeo.2018.12.017
2 DENG J, DENG H, ZHANG Y, et al Experimental study on microbial-induced calcium carbonate precipitation repairing fractured rock under different temperatures[J]. Sustainability, 2022, 14 (18): 11770
doi: 10.3390/su141811770
3 CUTHBERT M O, MCMILLAN L A, HANDLEY-SIDHU S, et al A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation[J]. Environmental Science and Technology, 2013, 47 (23): 13637- 13643
doi: 10.1021/es402601g
4 CUNNINGHAM A B, PHILLIPS A J, TROYER E, et al Wellbore leakage mitigation using engineered biomineralization[J]. Energy Procedia, 2014, 63: 4612- 4619
doi: 10.1016/j.egypro.2014.11.494
5 MOUNTASSIR G E, LUNN R J, MOIR H, et al Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels[J]. Water Resources Research, 2014, 50 (1): 1- 16
doi: 10.1002/2013WR013578
6 刘汉龙, 肖鹏, 肖杨, 等 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报 (中英文), 2019, 41 (1): 1- 14
LIU Hanlong, XIAO Peng, XIAO Yang, et al State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering (Chinese and English), 2019, 41 (1): 1- 14
7 ZOU Y L, BAI H, SHEN F, et al Experimental investigation on effects of bacterial concentration, crack inclination angle, crack roughness, and crack opening on the fracture permeability using microbially induced carbonate precipitation[J]. Advances in Civil Engineering, 2021, 2021 (1): 1- 15
8 MINTO J M, LUNN R J, EL MOUNTASSIR G Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation[J]. Water Resources Research, 2019, 55 (8): 7229- 7245
doi: 10.1029/2019WR025153
9 RAZBANI M A, JETTESTUEN E, RØYNE A Direct pore-scale numerical simulation of microbially induced calcium carbonate precipitation[J]. Water Resources Research, 2023, 59 (1): e2022WR032988
doi: 10.1029/2022WR032988
10 彭述权, 张珂嘉, 康景宇, 等 裂隙岩体微生物阻渗机理试验研究[J]. 长江科学院院报, 2020, 37 (9): 57- 63
PENG Shuquan, ZHANG Kejia, KANG Jingyu, et al Experimental study on microbial impermeability mechanism of fractured rock mass[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37 (9): 57- 63
doi: 10.11988/ckyyb.20190657
11 MENG H, GAO Y F, HE J, et al Microbially induced carbonate precipitation for wind erosion control of desert soil: field-scale tests[J]. Geoderma, 2021, 383: 114723
doi: 10.1016/j.geoderma.2020.114723
12 PHILLIPS A J, LAUCHNOR E, ELDRING J J, et al Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation[J]. Environmental Science and Technology, 2013, 47 (1): 142- 149
doi: 10.1021/es301294q
13 LANDA-MARBÁN D, TVEIT S, KUMAR K, et al Practical approaches to study microbially induced calcite precipitation at the field scale[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103256
doi: 10.1016/j.ijggc.2021.103256
14 GUO S J, ZHANG J X, LI M, et al A preliminary study of solid-waste coal gangue-based biomineralization as eco-friendly underground backfill material: Material preparation and macro-micro analyses[J]. Science of The Total Environment, 2021, 770: 145241
doi: 10.1016/j.scitotenv.2021.145241
15 LU T, WEI Z A, WANG W S, et al Experimental investigation of sample preparation and grouting technology on microbially reinforced tailings[J]. Construction and Building Materials, 2021, 312: 125458
doi: 10.1016/j.conbuildmat.2021.125458
16 PROUDFOOT D, BROOKS L, GAMMONS C H, et al Investigating the potential for microbially induced carbonate precipitation to treat mine waste[J]. Journal of Hazardous Materials, 2022, 424: 127490
doi: 10.1016/j.jhazmat.2021.127490
17 NIU Q J, LI C G, LIU Z Z, et al Solidification of uranium mill tailings by MBS-MICP and environmental implications[J]. Nuclear Engineering and Technology, 2022, 54 (10): 3631- 3640
doi: 10.1016/j.net.2022.04.022
18 PHILLIPS A J, CUNNINGHAM A B, GERLACH R, et al Fracture sealing with microbially-induced calcium carbonate precipitation: a field study[J]. Environmental Science and Technology, 2016, 50 (7): 4111- 4117
19 SONG C P, CHEN Y L, WANG J H Plugging high-permeability zones of oil reservoirs by microbially mediated calcium carbonate precipitation[J]. ACS Omega, 2020, 5 (24): 14376- 14383
doi: 10.1021/acsomega.0c00902
20 JROUNDI F, GÓMEZ-SUAGA P, JIMENEZ-LOPEZ C, et al Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone[J]. Science of the Total Environment, 2012, 425: 89- 98
doi: 10.1016/j.scitotenv.2012.02.059
21 MU B G, GUI Z Y, LU F, et al Microbial-induced carbonate precipitation improves physical and structural properties of Nanjing ancient city walls[J]. Materials, 2021, 14 (19): 5665
doi: 10.3390/ma14195665
22 MA G L, HE X, XIAO Y, et al Influence of bacterial suspension type on the strength of biocemented sand[J]. Canadian Geotechnical Journal, 2022, 59 (11): 2014- 2202
doi: 10.1139/cgj-2021-0295
23 WU C Z, CHU J, WU S F, et al Quantifying the permeability reduction of biogrouted rock fracture[J]. Rock Mechanics and Rock Engineering, 2019, 52 (3): 945- 947
24 程雷, 肖瑶, 邓华锋, 等 一株本源产脲酶细菌的分离培养及其在裂隙岩体加固中的应用[J]. 岩土力学, 2022, 43 (Suppl.2): 307- 314
CHENG Lei, XIAO Yao, DENG Huafeng, et al Isolation and culture of a native urease-producing bacterium and its application in the reinforcement of fractured rock mass[J]. Rock and Soil Mechanics, 2022, 43 (Suppl.2): 307- 314
25 WANG Y, SOGA K, DEJONG J T, et al Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: particle-scale experimental study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147 (6): 04021036
doi: 10.1061/(ASCE)GT.1943-5606.0002509
26 ZHANG Y, GUO H X, CHENG X H Influences of calcium sources on microbially induced carbonate precipitation in porous media[J]. Materials Research Innovations, 2014, 18 (Suppl.2): S2- S79
27 DENG X J, LI Y, WANG F, et al Experimental study on the mechanical properties and consolidation mechanism of microbial grouted backfill[J]. International Journal of Mining Science and Technology, 2022, 32 (2): 271- 282
doi: 10.1016/j.ijmst.2022.01.010
28 AL QABANY A, SOGA K Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Geotechnique, 2013, 63 (4): 331- 339
doi: 10.1680/geot.SIP13.P.022
29 LAI H, CUI M, CHU J Effect of pH on soil improvement using one-phase-low-pH MICP or EICP biocementation method[J]. Acta Geotechnica, 2023, 18 (6): 3259- 3272
doi: 10.1007/s11440-022-01759-3
30 OKWADHA G D O, LI J Optimum conditions for microbial carbonate precipitation[J]. Chemosphere, 2010, 81 (9): 1143- 1148
doi: 10.1016/j.chemosphere.2010.09.066
31 SUN X H, MIAO L C Application of bio-remediation with Bacillus megaterium for crack repair at low temperature[J]. Journal of Advanced Concrete Technology, 2020, 18 (5): 307- 319
doi: 10.3151/jact.18.307
32 MITCHELL A C, PHILLIPS A J, HAMILTON M A, et al Resilience of planktonic and biofilm cultures to supercritical CO2[J]. The Journal of Supercritical Fluids, 2008, 47 (2): 318- 325
doi: 10.1016/j.supflu.2008.07.005
33 PENG S Q, DI H, FAN L, et al Factors affecting permeability reduction of MICP for fractured rock[J]. Frontiers in Earth Science, 2020, 8: 217
doi: 10.3389/feart.2020.00217
34 CARDOSO R, ARBABZADEH E, DE LIMA J T, et al The influence of stone joints width and roughness on the efficiency of biocementation sealing[J]. Construction and Building Materials, 2021, 283: 122743
doi: 10.1016/j.conbuildmat.2021.122743
35 ZHONG L, ISLAM M R. A new microbial plugging process and its impact on fracture remediation [EB/OL]. [2024-10-10]. https://onepetro.org/SPEATCE/proceedings-abstract/95SPE/95SPE/SPE-30519-MS/57533.
36 杨钻, 程晓辉 劣化古建砖石砌体的微生物注浆加固试验研究[J]. 工业建筑, 2015, 45 (7): 48- 53
YANG Zuan, CHENG Xiaohui Experimental study of deteriorated historic masonry structures reinforced by microbial grouting method[J]. Industrial Construction, 2015, 45 (7): 48- 53
37 MINTO J M, MACLACHLAN E, EL MOUNTASSIR G, et al Rock fracture grouting with microbially induced carbonate precipitation[J]. Water Resources Research, 2016, 52 (11): 8827- 8844
doi: 10.1002/2016WR018884
38 JIN C Y, LI C J, WANG X T, et al Properties of jointed rock mass under triaxial compression based on microbial-induced calcium carbonate precipitation[J]. Journal of Materials in Civil Engineering, 2022, 34 (3): 4021459
doi: 10.1061/(ASCE)MT.1943-5533.0004086
39 WU C Z, CHU J, WU S F, et al Microbially induced calcite precipitation along a circular flow channel under a constant flow condition[J]. Acta Geotechnica, 2019, 14 (3): 673- 683
doi: 10.1007/s11440-018-0747-1
40 XIAO Y, DENG H F, LI J L, et al Shear performance and reinforcement mechanism of MICP-treated single fractured sandstone[J]. Frontiers in Earth Science, 2022, 10: 905940
doi: 10.3389/feart.2022.905940
41 ZHAO C, XIAO Y, HE X, et al Influence of injection methods on bio-mediated precipitation of carbonates in fracture-mimicking microfluidic chip[J]. Géotechnique, 2025, 75 (2): 153- 165
42 KIRKLAND C M, THANE A, HIEBERT R, et al Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): a field demonstration[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107060
doi: 10.1016/j.petrol.2020.107060
43 LEI Q H More is different: on the emergence of collective phenomena in fractured rocks[J]. Rock Mechanics Bulletin, 2023, 2 (4): 100080
doi: 10.1016/j.rockmb.2023.100080
44 支永艳, 邓华锋, 肖瑶, 等. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(增1): 237-244.
ZHI Yongyan, DENG Huafeng, XIAO Yao, et al. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(Suppl.1): 237-244.
45 JIANG Y J, LI B, WANG C S, et al Advances in development of shear-flow testing apparatuses and methods for rock fractures: a review[J]. Rock Mechanics Bulletin, 2022, 1 (1): 100005
doi: 10.1016/j.rockmb.2022.100005
46 HE M C, REN S L, TAO Z G Cross-fault Newton force measurement for earthquake prediction[J]. Rock Mechanics Bulletin, 2022, 1 (1): 100006
doi: 10.1016/j.rockmb.2022.100006
47 SONG C P, ELSWORTH D, JIA Y Z, et al Permeable rock matrix sealed with microbially-induced calcium carbonate precipitation: evolutions of mechanical behaviors and associated microstructure[J]. Engineering Geology, 2022, 304: 106697
doi: 10.1016/j.enggeo.2022.106697
48 TOBLER D J, MINTO J M, EL MOUNTASSIR G, et al Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation: influence on hydraulic and mechanical performance[J]. Water Resources Research, 2018, 54 (10): 8295- 8308
doi: 10.1029/2018WR023032
49 DONG Z H, PAN X H, TANG C S, et al Microbial healing of nature-like rough sandstone fractures for rock weathering mitigation[J]. Environmental Earth Sciences, 2022, 81 (15): 394
doi: 10.1007/s12665-022-10510-w
50 PHILLIPS A J, TROYER E, HIEBERT R, et al Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): a field scale demonstration[J]. Journal of Petroleum Science and Engineering, 2018, 171: 1141- 1148
doi: 10.1016/j.petrol.2018.08.012
51 LIU D, SHAO A L, LI H, et al A study on the enhancement of the mechanical properties of weak structural planes based on microbiologically induced calcium carbonate precipitation[J]. Bulletin of Engineering Geology and the Environment, 2020, 79 (8): 4349- 4362
doi: 10.1007/s10064-020-01818-7
52 HE M C, NIE W, ZHAO Z Y, et al Micro- and macro-fractures of coarse granite under true-triaxial unloading conditions[J]. Mining Science and Technology (China), 2011, 21 (3): 389- 394
doi: 10.1016/j.mstc.2011.05.016
53 ARBABZADEH E, CARDOSO R. Efficiency of biocementation as rock joints sealing technique evaluated through permeability changes [C] //4th International Conference on Geotechnical Research and Engineering. Rome: [s. n. ], 2019.
54 JONGVIVATSAKUL P, JANPRASIT K, NUAKLONG P, et al Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method[J]. Construction and Building Materials, 2019, 212: 737- 744
doi: 10.1016/j.conbuildmat.2019.04.035
55 ZHANG J, TANG C, LV C, et al Monitoring and characterizing the whole process of microbially induced calcium carbonate precipitation using electrical resistivity tomography[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2024, 150 (1): 04023132
doi: 10.1061/JGGEFK.GTENG-11782
56 杨海清, 陈池威, 赵岗, 等 砂岩质文物内部毛细水运移过程微电极响应特征[J]. 工程地质学报, 2024, 32 (1): 120- 132
YANG Haiqing, CHEN Chiwei, ZHAO Gang, et al Microelectrode response characteristics of capillary water migration in sandstone cultural relics[J]. Journal of Engineering Geology, 2024, 32 (1): 120- 132
57 GAO R G, LUO Y L, DENG H W Experimental study on repair of fractured rock mass by microbial induction technology[J]. Royal Society Open Science, 2019, 6 (11): 191318
doi: 10.1098/rsos.191318
58 MINTO J M, TAN Q, LUNN R J, et al 'Microbial mortar' - restoration of degraded marble structures with microbially induced carbonate precipitation[J]. Construction and Building Materials, 2018, 180: 44- 54
doi: 10.1016/j.conbuildmat.2018.05.200
59 CUNNINGHAM A B, GERLACH R, SPANGLER L, et al Microbially enhanced geologic containment of sequestered supercritical CO2[J]. Energy Procedia, 2009, 1 (1): 3245- 3252
doi: 10.1016/j.egypro.2009.02.109
60 KIRKLAND C M, AKYEL A, HIEBERT R, et al Ureolysis-induced calcium carbonate precipitation (UICP) in the presence of CO2-affected brine: a field demonstration[J]. International Journal of Greenhouse Gas Control, 2021, 109: 103391
doi: 10.1016/j.ijggc.2021.103391
61 MITCHELL A C, PHILLIPS A J, HIEBERT R, et al Biofilm enhanced geologic sequestration of supercritical CO2[J]. International Journal of Greenhouse Gas Control, 2009, 3 (1): 90- 99
doi: 10.1016/j.ijggc.2008.05.002
62 MITCHELL A C, PHILLIPS A, SCHULTZ L, et al Microbial CaCO3 mineral formation and stability in an experimentally simulated high pressure saline aquifer with supercritical CO2[J]. International Journal of Greenhouse Gas Control, 2013, 15: 86- 96
doi: 10.1016/j.ijggc.2013.02.001
63 DENG X J, YUAN Z X, LI Y, et al Experimental study on the mechanical properties of microbial mixed backfill[J]. Construction and Building Materials, 2020, 265: 120643
doi: 10.1016/j.conbuildmat.2020.120643
64 SONG C P, ELSWORTH D Strengthening mylonitized soft-coal reservoirs by microbial mineralization[J]. International Journal of Coal Geology, 2018, 200: 166- 172
doi: 10.1016/j.coal.2018.11.006
65 WANG Z J, ZHANG J X, LI M, et al Experimental study of microorganism-induced calcium carbonate precipitation to solidify coal gangue as backfill materials: mechanical properties and microstructure[J]. Environmental Science and Pollution Research, 2022, 29 (30): 45774- 45782
doi: 10.1007/s11356-022-18975-9
66 钱春香, 王安辉, 王欣 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36 (6): 1537- 1548
QIAN Chunxiang, WANG Anhui, WANG Xin Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36 (6): 1537- 1548
67 JIN C, LIU H Y, GUO M X, et al Experimental study on tailings cementation by MICP technique with immersion curing[J]. Plos One, 2022, 17 (8): e272281
68 ZÚÑIGA-BARRA H, TOLEDO-ALARCÓN J, TORRES-ARAVENA Á, et al Improving the sustainable management of mining tailings through microbially induced calcite precipitation: A review[J]. Minerals Engineering, 2022, 189: 107855
doi: 10.1016/j.mineng.2022.107855
69 许燕波, 钱春香, 陆兆文 微生物矿化修复重金属污染土壤[J]. 环境工程学报, 2013, 7 (7): 2763- 2768
XU Yanbo, QIAN Chunxiang, LU Zhaowen Remediation of heavy metal contaminated soils by bacteria biomineralization[J]. Chinese Journal of Environmental Engineering, 2013, 7 (7): 2763- 2768
70 ACHAL V, PAN X, ZHANG D Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation[J]. Ecological Engineering, 2011, 37 (10): 1601- 1605
doi: 10.1016/j.ecoleng.2011.06.008
71 WU Y, LI H, LI Y Biomineralization induced by cells of Sporosarcina pasteurii: mechanisms, applications and challenges[J]. Microorganisms, 2021, 9 (11): 2396
doi: 10.3390/microorganisms9112396
72 WANG C, HARBOTTLE D, LIU Q, et al Current state of fine mineral tailings treatment: a critical review on theory and practice[J]. Minerals Engineering, 2014, 58: 113- 131
doi: 10.1016/j.mineng.2014.01.018
73 LIN H, ZHOU M, LI B, et al Mechanisms, application advances and future perspectives of microbial-induced heavy metal precipitation: a review[J]. International Biodeterioration and Biodegradation, 2023, 178: 105544
74 武发思, 张永, 苏敏, 等 生物技术在文物保护修复中的应用研究进展[J]. 文物保护与考古科学, 2022, 34 (1): 133- 143
WU Fasi, ZHANG Yong, SU Min, et al Advancement of biotechnology for the conservation and restoration of cultural heritage objects[J]. Sciences of Conservation and Archaeology, 2022, 34 (1): 133- 143
75 李琼芳, 何鑫, 陈超, 等 两株嗜冷碳酸钙矿化菌对大理石表面修复效果研究[J]. 人工晶体学报, 2018, 47 (1): 172- 178
LI Qiongfang, HE Xin, CHEN Chao, et al Effect of two psychrotrophic calcium carbonate mineralized bacteria on the surface repair of marble[J]. Journal of Synthetic Crystals, 2018, 47 (1): 172- 178
doi: 10.3969/j.issn.1000-985X.2018.01.028
76 JROUNDI F, FERNÁNDEZ-VIVAS A, RODRIGUEZ-NAVARRO C, et al Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity[J]. Microbial Ecology, 2010, 60 (1): 39- 54
doi: 10.1007/s00248-010-9665-y
77 FISTOS T, FIERASCU I, DONI M, et al A short overview of recent developments in the application of polymeric materials for the conservation of stone cultural heritage elements[J]. Materials, 2022, 15 (18): 6294
doi: 10.3390/ma15186294
78 BARBOSA M T, INNOCENCIO C D R, SALZANI L O, et al Lime-based mortars with added silica fume and bioproducts for restoration and preservation of heritage buildings[J]. Journal of Building Pathology and Rehabilitation, 2023, 8 (1): 37
doi: 10.1007/s41024-023-00283-5
79 LE METAYER-LEVREL G, CASTANIER S, ORIAL G, et al Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony[J]. Sedimentary Geology, 1999, 126 (1-4): 25- 34
doi: 10.1016/S0037-0738(99)00029-9
80 YANG Z, CHENG X H, LI M. Engineering properties of MICP-bonded sandstones used for historical masonry building restoration [M]. Geo-Frontiers 2011: Advances in Geotechnical Engineering, 2011: 4031-4040.
81 RODRIGUEZ-NAVARRO C, RODRIGUEZ-GALLEGO M, BEN CHEKROUN K, et al Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization[J]. Applied and Environmental Microbiology, 2003, 69 (4): 2182- 2193
doi: 10.1128/AEM.69.4.2182-2193.2003
82 YANG Z, CHENG X H A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures[J]. Construction and Building Materials, 2013, 41: 505- 515
doi: 10.1016/j.conbuildmat.2012.12.055
83 YANG Y, HAN S, LIU H, et al Influence of particle size distribution on biocarbonation method produced microbial restoration mortar for conservation of sandstone cultural relics[J]. Biogeotechnics, 2023, 1 (4): 100051
doi: 10.1016/j.bgtech.2023.100051
84 何建宏, 郭红仙, 谭谦, 等 微生物诱导碳酸钙修复汉白玉石梁裂缝试验研究[J]. 文物保护与考古科学, 2019, 31 (6): 46- 53
HE Jianhong, GUO Hongxian, TAN Qian, et al Experiment research on the restoration of white marble beams using microbially-induced carbonate precipitation[J]. Sciences of Conservation and Archaeology, 2019, 31 (6): 46- 53
85 张建伟, 黄小山, 边汉亮, 等 基于脱脂奶粉联合诱导碳酸钙沉淀技术的古建筑修复加固[J]. 中国科技论文, 2021, 16 (10): 1035- 1039
ZHANG Jianwei, HUANG Xiaoshan, BIAN Hanliang, et al Restoration and reinforcement of ancient buildings based on the combined induced calcium carbonate precipitation technology of skimmed milk powder[J]. China Sciencepaper, 2021, 16 (10): 1035- 1039
doi: 10.3969/j.issn.2095-2783.2021.10.001
86 ZHONG M, LIU B, CHEN J, et al Research on plugging characteristics of microorganism induced calcite precipitation in sandstone environment[J]. Journal of Petroleum Science and Engineering, 2022, 218: 111040
doi: 10.1016/j.petrol.2022.111040
87 HOU L, ELSWORTH D, WANG J, et al Feasibility and prospects of symbiotic storage of CO2 and H2 in shale reservoirs[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113878
doi: 10.1016/j.rser.2023.113878
88 WEI P F, ZHENG L H, YANG M Z, et al Fuzzy-ball fluid self-selective profile control for enhanced oil recovery in heterogeneous reservoirs: the techniques and the mechanisms[J]. Fuel, 2020, 275: 117959
doi: 10.1016/j.fuel.2020.117959
89 FERRIS F G, STEHMEIER L G, KANTZAS A, et al. Bacteriogenic mineral plugging [EB/OL]. [2024-10-10]. https://onepetro.org/JCPT/article-abstract/doi/10.2118/97-09-07/182157/Bacteriogenic-Mineral-Plugging.
90 WU J, WANG X B, WANG H F, et al Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery[J]. RSC Advances, 2017, 7 (59): 37382- 37391
doi: 10.1039/C7RA05748B
91 SONG C, ELSWORTH D Microbially induced calcium carbonate plugging for enhanced oil recovery[J]. Geofluids, 2020, 2020 (1): 5921789
92 CUNNINGHAM A B, CLASS H, EBIGBO A, et al Field-scale modeling of microbially induced calcite precipitation[J]. Computational Geosciences, 2019, 23 (2): 399- 414
doi: 10.1007/s10596-018-9797-6
93 NAVEED M, DUAN J, UDDIN S, et al Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil[J]. Ecological Engineering, 2020, 153: 105885
doi: 10.1016/j.ecoleng.2020.105885
94 VAN PAASSEN L A, DAZA C M, STAAL M, et al Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36 (2): 168- 175
doi: 10.1016/j.ecoleng.2009.03.026
95 YU X, CHU J, YANG Y, et al Reduction of ammonia production in the biocementation process for sand using a new biocement[J]. Journal of Cleaner Production, 2021, 286: 124928
doi: 10.1016/j.jclepro.2020.124928
96 RAHMAN M M, HORA R N, AHENKORAH I, et al State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications[J]. Sustainability, 2020, 12 (15): 6281
doi: 10.3390/su12156281
97 SONG Z, SHEN D, LIU Z, et al A rapid and cost-effective biogrouting method for forming bio-piles considering in-situ situation[J]. Acta Geotechnica, 2024, 19 (8): 5597- 5609
doi: 10.1007/s11440-024-02243-w
98 SUER P, HALLBERG N, CARLSSON C, et al Biogrouting compared to jet grouting: Environmental (LCA) and economical assessment[J]. Journal of Environmental Science and Health, Part A, 2009, 44 (4): 346- 353
doi: 10.1080/10934520802659679
99 WANG J, HU X, ZHAO Y, et al Effects of molasses-based microbial dust suppressant on soil dust and microbial community[J]. Powder Technology, 2024, 441: 119831
doi: 10.1016/j.powtec.2024.119831
100 LIANG S, CHEN J, NIU J, et al Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation[J]. Marine Georesources and Geotechnology, 2020, 38 (4): 393- 399
doi: 10.1080/1064119X.2019.1575939
[1] 王正振,黄磊,戴国亮,周勇,苏天涛. 湿陷性黄土地基孔内深层超强夯技术的加固范围[J]. 浙江大学学报(工学版), 2025, 59(4): 750-758.
[2] 陈卓杰,周佳锦,陈伟乐,刘健,龚晓南. 深中通道沉管隧道深层水泥搅拌桩复合地基沉降计算分析[J]. 浙江大学学报(工学版), 2024, 58(7): 1397-1406.
[3] 邓友生,冯爱林,杨敏,杨彪,姚志刚,李龙. 煤矸石桩-土工格室复合路基承载特性[J]. 浙江大学学报(工学版), 2023, 57(4): 833-841.
[4] 余松霖,柯瀚,詹良通,孟涛,陈云敏,杨策. 工程渣土的工程特性及矿坑填埋场的工后沉降和容量分析[J]. 浙江大学学报(工学版), 2020, 54(12): 2364-2376.
[5] 郑凌逶, 谢新宇, 谢康和, 李金柱, 刘亦民. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073.
[6] 臧俊超, 郑凌逶, 谢新宇, 曹丽文,李卓明. 生活源污染土电渗加固试验[J]. 浙江大学学报(工学版), 2017, 51(2): 245-254.
[7] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[8] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[9] 凌道盛,石吉森,张如如,王云岗. Hansbo类有限单元法的非连续分片试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2142-2150.
[10] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394.
[11] 李新亮,李素贞,申永刚. 交通荷载作用下埋地管道应力分析与现场测试[J]. 浙江大学学报(工学版), 2014, 48(11): 1976-1982.
[12] 徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 2014, 48(11): 1941-1946.
[13] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[14] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
[15] 李雪刚,徐日庆,畅帅,廖斌,王兴陈. 响应面法优化有机质软土复合固化剂配方[J]. 浙江大学学报(工学版), 2014, 48(5): 843-849.