Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (9): 1986-1995    DOI: 10.3785/j.issn.1008-973X.2025.09.022
交通工程     
基于多通道图聚合注意力机制的共享单车借还量预测
王福建(),张泽天,陈喜群,王殿海
浙江大学 建筑工程学院 智能交通研究所,浙江 杭州 310058
Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism
Fujian WANG(),Zetian ZHANG,Xiqun CHEN,Dianhai WANG
Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2518 KB)   HTML
摘要:

针对共享单车短期借还量预测中存在的空间范围小、模型时空信息捕捉能力不足及准确性有限等问题,提出基于多通道图聚合注意力机制的预测方法. 根据共享单车在不同区域的流量,采用基于流量调整的虚拟站点划分方法,将城市划分为多个共享单车虚拟站点,并以站点间的借还量矩阵构建动态邻接矩阵,形成共享单车图网络结构. 通过多通道图聚合模块捕捉不同时间段的站点空间信息,并结合多头自注意力模块捕捉时间相关性. 引入交叉注意力机制模块,结合外生变量,获取不同变量之间的潜在联系. 在深圳市和纽约市进行实验,结果表明,与其他深度学习方法相比,该模型在不同时间段和地区均表现出显著优势,保持了稳定且较低的预测误差,证明了动态邻接矩阵以及融合外部特征的交叉注意力机制模块能够有效提高共享单车借还量的预测准确率.

关键词: 共享单车多源数据深度学习虚拟站点划分动态邻接矩阵交叉注意力    
Abstract:

A prediction method based on the multi-channel graph aggregated attention mechanism was proposed, to address the challenges of limited spatial scope, insufficient spatiotemporal information capture, and low accuracy in short-term bike-sharing demand prediction. Firstly, the city was divided into multiple bike-sharing virtual stations using a flow-adjusted virtual station partitioning method according to bike flows in different areas. A dynamic adjacency matrix was constructed using the origin-destination (OD) matrix between stations to form a bike-sharing graph network structure. Next, spatial information of stations across different time periods was captured via a multi-channel graph aggregation module, which was combined with a multi-head self-attention module to capture temporal correlations. Finally, a cross-attention mechanism, along with exogenous variables, was introduced to uncover potential relationships among various variables. Experiments conducted in Shenzhen and New York demonstrated that the model significantly outperformed other deep learning methods across various time periods and regions, maintaining stable and low prediction errors. The results confirmed that the dynamic adjacency matrix and the cross-attention mechanism integrating external features could effectively enhance the prediction accuracy of shared bike usage.

Key words: shared bike    multi-source data    deep learning    virtual station partitioning    dynamic adjacency matrix    cross-attention mechanism
收稿日期: 2024-11-29 出版日期: 2025-08-25
CLC:  U 484  
基金资助: 国家自然科学基金重点资助项目 (52131202);国家自然科学基金重点资助项目 (72431009).
作者简介: 王福建(1969—),男,副教授,博士,从事智能交通系统研究. orcid.org/0000-0002-6006-4423. E-mail:ciewfj@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王福建
张泽天
陈喜群
王殿海

引用本文:

王福建,张泽天,陈喜群,王殿海. 基于多通道图聚合注意力机制的共享单车借还量预测[J]. 浙江大学学报(工学版), 2025, 59(9): 1986-1995.

Fujian WANG,Zetian ZHANG,Xiqun CHEN,Dianhai WANG. Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1986-1995.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.022        https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1986

图 1  深圳市共享单车虚拟站点
图 2  多通道图聚合注意力机制模型
图 3  基于动态邻接矩阵的图聚合模块
图 4  注意力机制模块
模型深圳纽约
MAERMSEWMAPEMAERMSEWMAPE
ARIMA10.59517.7280.2011.8623.5050.416
Time-GCN5.24110.1020.1001.6022.9740.358
LSTM5.51210.3470.1051.5172.8060.339
CNN-bi-LSTM4.8639.2490.0921.2162.2140.271
GCN-LSTM-FCN3.1005.8410.0591.1752.2090.262
GCN-Transformer2.0113.3050.0381.0231.9860.228
GraphAgg-iTransformer1.6852.6910.0320.9731.8260.217
ST-AGCN1.7152.8920.0330.9751.8100.218
MCGA1.519*2.578*0.029*0.969*1.799*0.216*
表 1  深圳和纽约共享单车数据集在不同预测模型下的误差
头/层MAERMSE
8/81.519*2.578
4/81.5392.601
16/81.5342.593
8/61.5292.594
8/101.5222.570*
表 2  MCGA模型在不同超参数下的误差
模型MAERMSEWMAPE
全部1.519*2.578*0.029*
去除时间信息1.8432.9460.037
去除天气信息1.7122.7000.033
去除POI信息1.7032.6220.032
表 3  不同外生变量下MCGA的误差
图 5  不同站点的MAE
图 6  不同站点的WMAPE
图 7  不同时间的MAE
图 8  不同时间的WMAPE
图 9  高借还量站点预测值和真实值的比较图
图 10  中等借还量站点预测值和真实值的比较图
图 11  低借还量站点预测值和真实值的比较图
1 YU L, FENG T, LI T, et al Demand prediction and optimal allocation of shared bikes around urban rail transit stations[J]. Urban Rail Transit, 2023, 9 (1): 57- 71
doi: 10.1007/s40864-022-00183-w
2 TANG W, YANG C, WANG H, et al Spatiotemporal demand prediction for bike sharing based on WT-ConvLSTM[J]. Advances in Civil Engineering, 2024, 2024 (1): 2551687
doi: 10.1155/adce/2551687
3 XU C, JI J, LIU P The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 47- 60
doi: 10.1016/j.trc.2018.07.013
4 YANG Y, SHAO X, ZHU Y, et al Short-term forecasting of dockless bike-sharing demand with the built environment and weather[J]. Journal of Advanced Transportation, 2023, 2023 (1): 7407748
5 FENG J, LIU H An adaptive spatial-temporal method capturing for short-term bike-sharing prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (11): 16761- 16774
doi: 10.1109/TITS.2024.3406682
6 HE S, SHIN K G. Towards fine-grained flow forecasting: a graph attention approach for bike sharing systems [C]// Proceedings of the Proceedings of The Web Conference 2020. [s.l.]: ACM, 2020: 88–98.
7 GALLOP C, TSE C, ZHAO J A seasonal autoregressive model of Vancouver bicycle traffic using weather variables[J]. I-manager’s Journal on Civil Engineering, 2011, 1 (4): 1694
8 KALTENBRUNNER A, MEZA R, GRIVOLLA J, et al Urban cycles and mobility patterns: exploring and predicting trends in a bicycle-based public transport system[J]. Pervasive and Mobile Computing, 2010, 6 (4): 455- 466
doi: 10.1016/j.pmcj.2010.07.002
9 YOON J W, PINELLI F, CALABRESE F. Cityride: a predictive bike sharing journey advisor [C]// Proceedings of the IEEE 13th International Conference on Mobile Data Management. Bengaluru: IEEE, 2012: 306–311.
10 ASHQAR H I, ELHENAWY M, ALMANNAA M H, et al. Modeling bike availability in a bike-sharing system using machine learning [C]// Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems. Naples: IEEE, 2017: 374–378.
11 SATHISHKUMAR V E, PARK J, CHO Y Using data mining techniques for bike sharing demand prediction in metropolitan city[J]. Computer Communications, 2020, 153: 353- 366
doi: 10.1016/j.comcom.2020.02.007
12 JIA R, CHAMOUN R, WALLENBRING A, et al A spatio-temporal deep learning model for short-term bike-sharing demand prediction[J]. Electronic Research Archive, 2023, 31 (2): 1031- 1047
doi: 10.3934/era.2023051
13 LIN L, HE Z, PEETA S Predicting station-level hourly demand in a large-scale bike-sharing network: a graph convolutional neural network approach[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 258- 276
doi: 10.1016/j.trc.2018.10.011
14 DU L, WANG Y, SONG G, et al. Dynamic network embedding: an extended approach for skip-gram based network embedding [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: International Joint Conferences on Artificial Intelligence Organization, 2018: 2086–2092.
15 PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs [C]// 34th AAAI Conference on Artificial Intelligence. New York: Elsevier, 2020: 5363–5370.
16 WEN Z, FANG Y. TREND: temporal event and node dynamics for graph representation learning [C]// Proceedings of the ACM Web Conference 2022. [s.l.]: ACM, 2022: 1159–1169.
17 YOU J, DU T, LESKOVEC J. ROLAND: graph learning framework for dynamic graphs [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington DC: ACM, 2022: 2358–2366.
18 PAN Y, ZHENG R C, ZHANG J, et al Predicting bike sharing demand using recurrent neural networks[J]. Procedia Computer Science, 2019, 147: 562- 566
doi: 10.1016/j.procs.2019.01.217
19 MEHDIZADEH DASTJERDI A, MORENCY C Bike-sharing demand prediction at community level under COVID-19 using deep learning[J]. Sensors, 2022, 22 (3): 1060
doi: 10.3390/s22031060
20 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need [C]// 31st Conference on Neural Information Processing Systems. Long Beach: 2017 : 6000–6010.
21 LIU Z, GOKON H, SEKIMOTO Y Long-term demand prediction for public bicycle sharing system: a spatio-temporal attentional graph convolution networks approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (12): 21515- 21527
doi: 10.1109/TITS.2024.3469169
22 LI X, ZHANG G, CUI H, et al MCANet: a joint semantic segmentation framework of optical and SAR images for land use classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102638
doi: 10.1016/j.jag.2021.102638
23 KHAN M, GUEAIEB W, EL SADDIK A, et al MSER: multimodal speech emotion recognition using cross-attention with deep fusion[J]. Expert Systems with Applications, 2024, 245: 122946
doi: 10.1016/j.eswa.2023.122946
24 GU J, ZHOU Q, YANG J, et al Exploiting interpretable patterns for flow prediction in dockless bike sharing systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (2): 640- 652
doi: 10.1109/TKDE.2020.2988008
25 HUA M, CHEN J, CHEN X, et al Forecasting usage and bike distribution of dockless bike-sharing using journey data[J]. IET Intelligent Transport Systems, 2020, 14 (12): 1647- 1656
doi: 10.1049/iet-its.2020.0305
26 AI Y, LI Z, GAN M, et al Retraction note: a deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system[J]. Neural Computing and Applications, 2024, 36 (25): 15927
doi: 10.1007/s00521-024-10079-4
27 LIU Z, SHEN Y, ZHU Y. Inferring dockless shared bike distribution in new cities [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 378–386.
28 ZHANG J, ZHENG Y, QI D, et al. DNN-based prediction model for spatio-temporal data [C]// Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Burlingame: ACM, 2016: 1–4.
[1] 段继忠,李海源. 基于变分模型和Transformer的多尺度并行磁共振成像重建[J]. 浙江大学学报(工学版), 2025, 59(9): 1826-1837.
[2] 张弘,张学成,王国强,顾潘龙,江楠. 基于三维视觉的软体机器人实时定位与控制[J]. 浙江大学学报(工学版), 2025, 59(8): 1574-1582.
[3] 王圣举,张赞. 基于加速扩散模型的缺失值插补算法[J]. 浙江大学学报(工学版), 2025, 59(7): 1471-1480.
[4] 章东平,王大为,何数技,汤斯亮,刘志勇,刘中秋. 基于跨维度特征融合的航空发动机寿命预测[J]. 浙江大学学报(工学版), 2025, 59(7): 1504-1513.
[5] 徐慧智,王秀青. 基于车辆图像特征的前车距离与速度感知[J]. 浙江大学学报(工学版), 2025, 59(6): 1219-1232.
[6] 蔡永青,韩成,权巍,陈兀迪. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1110-1118.
[7] 王立红,刘新倩,李静,冯志全. 基于联邦学习和时空特征融合的网络入侵检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1201-1210.
[8] 陈赞,李冉,冯远静,李永强. 基于时间维超分辨率的视频快照压缩成像重构[J]. 浙江大学学报(工学版), 2025, 59(5): 956-963.
[9] 陈巧红,郭孟浩,方贤,孙麒. 基于跨模态级联扩散模型的图像描述方法[J]. 浙江大学学报(工学版), 2025, 59(4): 787-794.
[10] 顾正宇,赖菲菲,耿辰,王希明,戴亚康. 基于知识引导的缺血性脑卒中梗死区分割方法[J]. 浙江大学学报(工学版), 2025, 59(4): 814-820.
[11] 马莉,王永顺,胡瑶,范磊. 预训练长短时空交错Transformer在交通流预测中的应用[J]. 浙江大学学报(工学版), 2025, 59(4): 669-678.
[12] 杨凯博,钟铭恩,谭佳威,邓智颖,周梦丽,肖子佶. 基于半监督学习的多场景火灾小规模稀薄烟雾检测[J]. 浙江大学学报(工学版), 2025, 59(3): 546-556.
[13] 梁礼明,龙鹏威,金家新,李仁杰,曾璐. 基于改进YOLOv8s的钢材表面缺陷检测算法[J]. 浙江大学学报(工学版), 2025, 59(3): 512-522.
[14] 姚明辉,王悦燕,吴启亮,牛燕,王聪. 基于小样本人体运动行为识别的孪生网络算法[J]. 浙江大学学报(工学版), 2025, 59(3): 504-511.
[15] 陈智超,杨杰,李凡,冯志成. 基于深度学习的列车运行环境感知关键算法研究综述[J]. 浙江大学学报(工学版), 2025, 59(1): 1-17.