机械工程、能源工程 |
|
|
|
|
循环流化床锅炉节能减碳运行调控及工程验证 |
李钦武1,2,3( ),俞李斌1,3,刘庭宇2,张京旭2,翁卫国4,郑政杰2,王韬2,王海2,郑成航1,3,*( ),高翔1,3 |
1. 浙江大学 能源高效清洁利用全国重点实验室,浙江 杭州 310027 2. 浙江浩普环保工程有限公司,浙江 杭州 310012 3. 浙江大学 碳中和研究院,浙江 杭州 310027 4. 浙江大学 嘉兴研究院,浙江 嘉兴 314001 |
|
Energy-saving and carbon-reducing operation control and engineering verification of circulating fluidized bed boiler |
Qinwu LI1,2,3( ),Libin YU1,3,Tingyu LIU2,Jingxu ZHANG2,Weiguo WEN4,Zhengjie ZHENG2,Tao WANG2,Hai WANG2,Chenghang ZHENG1,3,*( ),Xiang GAO1,3 |
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China 2. Zhejiang Hope Environmental Protection Engineering Limited Company, Hangzhou 310012, China 3. Institute of Carbon Neutrality, Zhejiang University, Hangzhou 310027, China 4. Jiaxing Research Institute, Zhejiang University, Jiaxing 314001, China |
引用本文:
李钦武,俞李斌,刘庭宇,张京旭,翁卫国,郑政杰,王韬,王海,郑成航,高翔. 循环流化床锅炉节能减碳运行调控及工程验证[J]. 浙江大学学报(工学版), 2024, 58(8): 1618-1627.
Qinwu LI,Libin YU,Tingyu LIU,Jingxu ZHANG,Weiguo WEN,Zhengjie ZHENG,Tao WANG,Hai WANG,Chenghang ZHENG,Xiang GAO. Energy-saving and carbon-reducing operation control and engineering verification of circulating fluidized bed boiler. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1618-1627.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.009
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1618
|
1 |
ZHENG C, XIAO L, QU R, et al Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst[J]. Chemical Engineering Journal, 2019, 361: 874- 884
|
2 |
ZHANG Y, LUO C, LU Y, et al Technology development and cost analysis of multiple pollutant abatement for ultra-low emission coal-fired power plants in China[J]. Journal of Environmental Sciences (China), 2023, 123: 270- 280
|
3 |
HU X, ZHOU T, LI C, et al Investigation on the dynamic characteristics under load regulation in CFB boiler with whole loop model[J]. Chemical Engineering Science, 2024, 287 (4): 119784
|
4 |
舒坚, 郑成航, 郭一杉, 等 基于动态矩阵算法的湿法脱硫控制系统设计[J]. 动力工程学报, 2020, 40 (1): 44- 50 SHU Jian, ZHENG Chenghang, GUO Yishan, et al Design of a wet flue gas desulfurization control system based on dynamic matrix algorithm[J]. Journal of Chinese Society of Power Engineering, 2020, 40 (1): 44- 50
|
5 |
王伟同, 范海东, 梁成思, 等 基于随机森林算法的对冲锅炉出口NOx排放量预测模型研究[J]. 热力发电, 2022, 51 (4): 96- 104 WANG Weitong, FAN Haidong, LIANG Chengsi, et al Predictive modeling of NOx outlet of hedged boiler based on random forest[J]. Thermal Power Generation, 2022, 51 (4): 96- 104
|
6 |
范海东, 陈竹, 赵中阳, 等 1000 MW燃煤机组湿法脱硫装置氧化系统运行优化[J]. 浙江大学学报: 工学版, 2023, 57 (4): 675- 682 FAN Haidong, CHEN Zhu, ZHAO Zhongyang, et al Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 675- 682
|
7 |
WANG P, SI F, CAO Y, et al Prediction of superheated steam temperature for thermal power plants using a novel integrated method based on the hybrid model and attention mechanism[J]. Applied Thermal Engineering, 2022, 203: 117899
|
8 |
ZHU B, REN S, WENG Q, et al A physics-informed neural network that considers monotonic relationships for predicting NOx emissions from coal-fired boilers[J]. Fuel, 2024, 364: 131026
|
9 |
徐哲炜, 郑成航, 张涌新, 等 基于改进关联规则算法的燃煤电厂脱硫系统工况参数优化[J]. 中国电机工程学报, 2017, 37 (15): 4408- 4414 XU Zhewei, ZHENG Chenghang, ZHANG Yongxin, et al Operation optimization of flue gas desulfurization system in power plant based on an improved association rules algorithm[J]. Proceedings of the CSEE, 2017, 37 (15): 4408- 4414
|
10 |
LV Y, LIU J, YANG T, et al A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler[J]. Energy, 2013, 55: 319- 329
|
11 |
高菲 锅炉燃烧含氧量中的大数据与神经网络技术分析[J]. 工业加热, 2019, 48 (5): 15- 18 GAO Fei Analysis of big data and neural network technology in combustion oxygen content of boiler[J]. Industrial Heating, 2019, 48 (5): 15- 18
doi: 10.3969/j.issn.1002-1639.2019.05.005
|
12 |
PANG C, DUAN D, ZHOU Z, et al An integrated LSTM-AM and SPRT method for fault early detection of forced-oxidation system in wet flue gas desulfurization[J]. Transactions of the Institution of Chemical Engineers Process Safety and Environmental Protection, Part B, 2022, 160: 242- 254
|
13 |
HAN X, YAN Y, CHEN Y, et al Monitoring of oxygen content in the flue gas at a coal-fired power plant using cloud modeling techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63 (4): 953- 963
|
14 |
崔仕文, 铁治欣, 丁成富, 等 基于偏最小二乘支持向量机的烟气湿法脱硫效率预测模型[J]. 热力发电, 2017, 46 (4): 81- 87 CUI Shiwen, TIE Zhixin, DING Chengfu, et al Prediction model for flue gas wet desulfurization efficiency based on partial least squares support vector machine[J]. Thermal Power Generation, 2017, 46 (4): 81- 87
doi: 10.3969/j.issn.1002-3364.2017.04.081
|
15 |
耿铭垚, 胡锐, 李凌 火电机组锅炉烟气含氧量预测[J]. 上海理工大学学报, 2021, 43 (4): 319- 324 GENG Mingyao, HU Rui, LI Ling Prediction of oxygen content in boiler flue gas of thermal power unit[J]. University of Shanghai for Science and Technology, 2021, 43 (4): 319- 324
|
16 |
YIN G, LI Q, ZHAO Z, et al Dynamic NOx emission prediction based on composite models adapt to different operating conditions of coal-fired utility boilers[J]. Environmental Science and Pollution Research International, 2021, 29 (9): 13541- 13554
|
17 |
刘圣晶, 冯旭刚, 章家岩 基于GA-IGPC的锅炉烟气含氧量控制系统研究与应用[J]. 电脑知识与技术, 2022, 18 (1): 122- 123 LIU Shengjing, FENG Xugang, ZHANG Jiayan Research and application of boiler flue gas oxygen content control system based on GA-IGPC model[J]. Computer Knowledge and Technology, 2022, 18 (1): 122- 123
doi: 10.3969/j.issn.1009-3044.2022.1.dnzsyjs-itrzyksb202201044
|
18 |
陈宇, 陈昀丛, 武利斌, 等 基于PSO-DMC的SCR脱硝控制策略研究[J]. 装备制造技术, 2023, (2): 74- 76 CHEN Yu, CHEN Yuncong, WU Libin, et al Research on SCR denitrification control strategy based on PSO-DMC[J]. Equipment Manufacturing Technology, 2023, (2): 74- 76
doi: 10.3969/j.issn.1672-545X.2023.02.018
|
19 |
PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems . Guangzhou: [s. n. ], 2017.
|
20 |
TANHA J, ABDI Y, SAMADI N, et al Boosting methods for multi-class imbalanced data classification: an experimental review[J]. Journal of Big Data, 2020, 7 (1): 1- 47
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|