Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1618-1627    DOI: 10.3785/j.issn.1008-973X.2024.08.009
机械工程、能源工程     
循环流化床锅炉节能减碳运行调控及工程验证
李钦武1,2,3(),俞李斌1,3,刘庭宇2,张京旭2,翁卫国4,郑政杰2,王韬2,王海2,郑成航1,3,*(),高翔1,3
1. 浙江大学 能源高效清洁利用全国重点实验室,浙江 杭州 310027
2. 浙江浩普环保工程有限公司,浙江 杭州 310012
3. 浙江大学 碳中和研究院,浙江 杭州 310027
4. 浙江大学 嘉兴研究院,浙江 嘉兴 314001
Energy-saving and carbon-reducing operation control and engineering verification of circulating fluidized bed boiler
Qinwu LI1,2,3(),Libin YU1,3,Tingyu LIU2,Jingxu ZHANG2,Weiguo WEN4,Zhengjie ZHENG2,Tao WANG2,Hai WANG2,Chenghang ZHENG1,3,*(),Xiang GAO1,3
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Zhejiang Hope Environmental Protection Engineering Limited Company, Hangzhou 310012, China
3. Institute of Carbon Neutrality, Zhejiang University, Hangzhou 310027, China
4. Jiaxing Research Institute, Zhejiang University, Jiaxing 314001, China
 全文: PDF(1971 KB)   HTML
摘要:

构建基于烟气中氧气体积分数及炉膛出口压力的锅炉运行协同控制模型,可以实时、准确地预测烟气中氧气体积分数的变化趋势,提前给定锅炉二次风机和引风机控制指令,显著减小了不同负荷条件下锅炉烟气中氧气体积分数、负压等关键运行参数的波动. 在300 t/h循环流化床锅炉上的工业验证结果表明:利用协同控制模型可以提高锅炉运行控制的品质,锅炉变负荷工况条件下烟气中氧气体积分数控制在目标值±0.25%范围内,炉膛出口压力控制在目标值±45 Pa范围内的统计概率为99%. 运行一周的统计结果表明,相比于原有控制,协同控制模型投运后单位产汽量耗煤可以减小1.508%,单位产汽量风机耗电可以减少1.886%.

关键词: 氧气体积分数协同控制模型炉膛出口压力节能减碳    
Abstract:

A cooperative control model based on volume fraction of oxygen in flue gas and furnace outlet pressure was established in order to accurately predict the trend of real-time volume fraction of oxygen and provide control instructions for the secondary air fan and induced draft fan of the boiler in advance. Then the fluctuation of key operating parameters such as volume fraction of oxygen and furnace outlet pressure of the boiler was significantly reduced under different load conditions. The industrial validation results on a 300 t/h circulating fluidized bed boiler show that the cooperative control model can improve the quality of boiler operation and control. The statistical probability that the volume fraction of oxygen was controlled within the target value of ±0.25%, and the furnace outlet pressure was controlled within the target value of ±45 Pa under varying load conditions was 99%. The statistical results of one week’s operation showed that the cooperative control model could reduce coal consumption per unit of steam production by 1.508%, and fan power consumption per unit of steam production by 1.886% compared with the original control.

Key words: volume fraction of oxygen    cooperative control model    furnace outlet pressure    energy saving and carbon reduction
收稿日期: 2023-12-27 出版日期: 2024-07-23
CLC:  X 51  
基金资助: 国家自然科学基金资助项目(42341208);中央高校基本科研业务费专项资金资助项目(2022ZJJH02-03).
通讯作者: 郑成航     E-mail: 727180194@qq.com;zhengch2003@zju.edu.cn
作者简介: 李钦武(1981—),男,博士生,高级工程师,从事烟气污染控制工艺及其智能化技术的研究. orcid.org/0009-0000-2786-0076. E-mail:727180194@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李钦武
俞李斌
刘庭宇
张京旭
翁卫国
郑政杰
王韬
王海
郑成航
高翔

引用本文:

李钦武,俞李斌,刘庭宇,张京旭,翁卫国,郑政杰,王韬,王海,郑成航,高翔. 循环流化床锅炉节能减碳运行调控及工程验证[J]. 浙江大学学报(工学版), 2024, 58(8): 1618-1627.

Qinwu LI,Libin YU,Tingyu LIU,Jingxu ZHANG,Weiguo WEN,Zhengjie ZHENG,Tao WANG,Hai WANG,Chenghang ZHENG,Xiang GAO. Energy-saving and carbon-reducing operation control and engineering verification of circulating fluidized bed boiler. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1618-1627.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.009        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1618

自变量因变量
一次风机频率烟气中氧气体积分数
二次风机频率炉膛出口压力
总给煤量
引风机频率
表 1  协同控制模型的相关运行变量
图 1  Catboost模型中相关变量的特征重要性
图 2  协同控制模型的示意图
图 3  烟气中氧气体积分数实测值与预测值的对比
图 4  协同控制模型与原有控制的实际运行效果对比
图 5  协同控制模型和原有控制的长时间实际运行效果对比
控制方法$ q_m $/(t·h?1)$ Q_{\text{m}} $/(t·h?1)$ P_{\text{F}} $/kW$ P_{\text{S}} $/kW$ P_{\text{ID}} $/kW$ C_{\text{coal}} $$ E_{\text{power}} $/(kW·h·t?1)
原有控制191.525.40415.95129.79396.670.132 64.921 2
PSO寻优的协同控制184.824.40404.88115.52381.930.132 04.882 7
WOA寻优的协同控制188.924.67413.13114.41384.540.130 64.828 4
表 2  协同控制模型的周运行数据节能分析
项目原有控制PSO寻优的协同控制WOA寻优的协同控制
给煤量电耗量给煤量电耗量给煤量电耗量
长期均值25.00 t/h940.00 kW24.89 t/h932.65 kW24.62 t/h922.27 kW
年总耗量1.5000×105 t5.64×106 kW·h1.4934×105 t5.60×106 kW·h1.4772×105 t5.53×106 kW·h
标煤折算量1.0714×105 t1.0667×105 t1.0551×105 t
标煤单价1000 元/t0.5 元/(kW·h)1000 元/t0.5 元/(kW·h)1000 元/t0.5 元/(kW·h)
年运行成本10714万元282 万元10667 万元280 万元10551 万元277 万元
年二氧化碳排放质量2.9681×105 t3.22×103 t2.9548×105 t3.19×103 t2.9226×105 t3.15×103 t
成本合计10996万元10947万元10828万元
碳排放合计3.0003×105 t2.9867×105 t2.9541×105 t
表 3  协同控制模型投运的效益推算
1 ZHENG C, XIAO L, QU R, et al Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst[J]. Chemical Engineering Journal, 2019, 361: 874- 884
2 ZHANG Y, LUO C, LU Y, et al Technology development and cost analysis of multiple pollutant abatement for ultra-low emission coal-fired power plants in China[J]. Journal of Environmental Sciences (China), 2023, 123: 270- 280
3 HU X, ZHOU T, LI C, et al Investigation on the dynamic characteristics under load regulation in CFB boiler with whole loop model[J]. Chemical Engineering Science, 2024, 287 (4): 119784
4 舒坚, 郑成航, 郭一杉, 等 基于动态矩阵算法的湿法脱硫控制系统设计[J]. 动力工程学报, 2020, 40 (1): 44- 50
SHU Jian, ZHENG Chenghang, GUO Yishan, et al Design of a wet flue gas desulfurization control system based on dynamic matrix algorithm[J]. Journal of Chinese Society of Power Engineering, 2020, 40 (1): 44- 50
5 王伟同, 范海东, 梁成思, 等 基于随机森林算法的对冲锅炉出口NOx排放量预测模型研究[J]. 热力发电, 2022, 51 (4): 96- 104
WANG Weitong, FAN Haidong, LIANG Chengsi, et al Predictive modeling of NOx outlet of hedged boiler based on random forest[J]. Thermal Power Generation, 2022, 51 (4): 96- 104
6 范海东, 陈竹, 赵中阳, 等 1000 MW燃煤机组湿法脱硫装置氧化系统运行优化[J]. 浙江大学学报: 工学版, 2023, 57 (4): 675- 682
FAN Haidong, CHEN Zhu, ZHAO Zhongyang, et al Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 675- 682
7 WANG P, SI F, CAO Y, et al Prediction of superheated steam temperature for thermal power plants using a novel integrated method based on the hybrid model and attention mechanism[J]. Applied Thermal Engineering, 2022, 203: 117899
8 ZHU B, REN S, WENG Q, et al A physics-informed neural network that considers monotonic relationships for predicting NOx emissions from coal-fired boilers[J]. Fuel, 2024, 364: 131026
9 徐哲炜, 郑成航, 张涌新, 等 基于改进关联规则算法的燃煤电厂脱硫系统工况参数优化[J]. 中国电机工程学报, 2017, 37 (15): 4408- 4414
XU Zhewei, ZHENG Chenghang, ZHANG Yongxin, et al Operation optimization of flue gas desulfurization system in power plant based on an improved association rules algorithm[J]. Proceedings of the CSEE, 2017, 37 (15): 4408- 4414
10 LV Y, LIU J, YANG T, et al A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler[J]. Energy, 2013, 55: 319- 329
11 高菲 锅炉燃烧含氧量中的大数据与神经网络技术分析[J]. 工业加热, 2019, 48 (5): 15- 18
GAO Fei Analysis of big data and neural network technology in combustion oxygen content of boiler[J]. Industrial Heating, 2019, 48 (5): 15- 18
doi: 10.3969/j.issn.1002-1639.2019.05.005
12 PANG C, DUAN D, ZHOU Z, et al An integrated LSTM-AM and SPRT method for fault early detection of forced-oxidation system in wet flue gas desulfurization[J]. Transactions of the Institution of Chemical Engineers Process Safety and Environmental Protection, Part B, 2022, 160: 242- 254
13 HAN X, YAN Y, CHEN Y, et al Monitoring of oxygen content in the flue gas at a coal-fired power plant using cloud modeling techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63 (4): 953- 963
14 崔仕文, 铁治欣, 丁成富, 等 基于偏最小二乘支持向量机的烟气湿法脱硫效率预测模型[J]. 热力发电, 2017, 46 (4): 81- 87
CUI Shiwen, TIE Zhixin, DING Chengfu, et al Prediction model for flue gas wet desulfurization efficiency based on partial least squares support vector machine[J]. Thermal Power Generation, 2017, 46 (4): 81- 87
doi: 10.3969/j.issn.1002-3364.2017.04.081
15 耿铭垚, 胡锐, 李凌 火电机组锅炉烟气含氧量预测[J]. 上海理工大学学报, 2021, 43 (4): 319- 324
GENG Mingyao, HU Rui, LI Ling Prediction of oxygen content in boiler flue gas of thermal power unit[J]. University of Shanghai for Science and Technology, 2021, 43 (4): 319- 324
16 YIN G, LI Q, ZHAO Z, et al Dynamic NOx emission prediction based on composite models adapt to different operating conditions of coal-fired utility boilers[J]. Environmental Science and Pollution Research International, 2021, 29 (9): 13541- 13554
17 刘圣晶, 冯旭刚, 章家岩 基于GA-IGPC的锅炉烟气含氧量控制系统研究与应用[J]. 电脑知识与技术, 2022, 18 (1): 122- 123
LIU Shengjing, FENG Xugang, ZHANG Jiayan Research and application of boiler flue gas oxygen content control system based on GA-IGPC model[J]. Computer Knowledge and Technology, 2022, 18 (1): 122- 123
doi: 10.3969/j.issn.1009-3044.2022.1.dnzsyjs-itrzyksb202201044
18 陈宇, 陈昀丛, 武利斌, 等 基于PSO-DMC的SCR脱硝控制策略研究[J]. 装备制造技术, 2023, (2): 74- 76
CHEN Yu, CHEN Yuncong, WU Libin, et al Research on SCR denitrification control strategy based on PSO-DMC[J]. Equipment Manufacturing Technology, 2023, (2): 74- 76
doi: 10.3969/j.issn.1672-545X.2023.02.018
19 PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems . Guangzhou: [s. n. ], 2017.
20 TANHA J, ABDI Y, SAMADI N, et al Boosting methods for multi-class imbalanced data classification: an experimental review[J]. Journal of Big Data, 2020, 7 (1): 1- 47
[1] 董红召,金灿,唐伟,佘翊妮,林盈盈. 基于遗传-模式搜索算法的微尺度管控区域大气污染物PM2.5溯源[J]. 浙江大学学报(工学版), 2024, 58(6): 1296-1304.
[2] 范海东,陈竹,赵中阳,梁成思,郑成航,高翔. 1 000 MW燃煤机组湿法脱硫装置氧化系统运行优化[J]. 浙江大学学报(工学版), 2023, 57(4): 675-682.
[3] 郭萌,张玉茹,魏幸,王文静. 固胺负载SBA-15的石墨烯改性及其CO2吸附性能[J]. 浙江大学学报(工学版), 2022, 56(8): 1588-1596.
[4] 高尔豪,寿恬雨,黄蓓,王伟,施耀. CuCr2O4催化剂形貌特征与其SCR脱硝性能的关系[J]. 浙江大学学报(工学版), 2022, 56(6): 1199-1205.
[5] 王涛,董昊,侯成龙,王欣茹. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475.
[6] 王浩霖,骆仲泱,赫明春,沈丹. 烟气成分对静电除尘器放电特性的影响[J]. 浙江大学学报(工学版), 2020, 54(12): 2336-2343.
[7] 韦彦斐,周荣,周敏捷,高翔. 水泥炉窑SNCR-SCR联合脱硝中试实验研究[J]. 浙江大学学报(工学版), 2020, 54(10): 1986-1992.
[8] 王军明,赵兴亚,陈玲红,韩黎霞,高翔,岑可法. 氨对二次有机气溶胶光学特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1812-1818.
[9] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.
[10] 李康为,应方,陈玲红,郑仙珏,韩黎霞,吴学成,高翔,岑可法. 杭州市主城区VOCs污染特征及影响因素[J]. 浙江大学学报(工学版), 2019, 53(4): 671-683.
[11] 胡磊青,程军,王亚丽,刘建忠,周俊虎,岑可法. PVP改性PDMS/PAN中空纤维复合膜提升表面亲水性[J]. 浙江大学学报(工学版), 2019, 53(2): 228-233.
[12] 程军,刘建峰,张曦,张泽,田江磊,周俊虎,岑可法. 微藻水热提取油脂经脱氧断键制航油[J]. 浙江大学学报(工学版), 2019, 53(2): 214-219.
[13] 周栋, 骆仲泱, 鲁梦诗, 赫明春, 陈浩, 方梦祥. 单分散气溶胶的声波团聚实验[J]. 浙江大学学报(工学版), 2017, 51(2): 358-362.
[14] 宁致远, 沈欣军, 李树然, 闫克平. 湿式除尘器内部湍流场与粒子轨迹的数值分析[J]. 浙江大学学报(工学版), 2017, 51(2): 384-392.
[15] 陈文聪, 侯艺文, 吴建, 王莉红. 化纤行业PM2.5和VOCs排放特性研究[J]. 浙江大学学报(工学版), 2017, 51(1): 145-152.