Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1255-1265    DOI: 10.3785/j.issn.1008-973X.2024.06.015
电气工程     
基于改进模拟退火-粒子群的配电网分布式光伏承载力评估
门茂琛1(),赵睿2,张金帅3,王鹏3,张庆2
1. 郑州大学综合设计研究院有限公司,河南 郑州 450001
2. 郑州大学 电气与信息工程学院,河南 郑州 450001
3. 国网河南省电力公司 电力科学研究院,河南 郑州 450052
Evaluation of distributed photovoltaic hosting capacity of distribution networks based on improved simulated annealing-particle swarm optimization
Maochen MEN1(),Rui ZHAO2,Jinshuai ZHANG3,Peng WANG3,Qing ZHANG2
1. Zhengzhou University Comprehensive Design and Research Institute Co. Ltd, Zhengzhou 450001, China
2. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
3. Institute of Electric Power Science, State Grid Henan Electric Power Company, Zhengzhou 450052, China
 全文: PDF(1285 KB)   HTML
摘要:

大规模分布式光伏并网给中压配电网带来严重功率反送,导致中压配电网出现节点电压越限和配电变压器反向过载问题. 以系统潮流平衡、节点电压偏差、配电变压器反向负载率和线路载流量为约束条件,以分布式光伏并网容量与系统网络损耗之差的分布式光伏等效并网容量为目标函数,建立中压配电网分布式光伏承载力评估模型,并提出改进模拟退火-粒子群(SA-PSO)算法. 对IEEE33系统和实际中压配电网进行分布式光伏承载力计算,结果表明,所建立的分布式光伏承载力评估模型适用于中压配电网节点电压稳定性与配电变压器安全运行问题评估;相较于其他算法,改进SA-PSO算法提高了评估模型计算的收敛速度与寻优能力,在相同约束条件限值下,所得线路分布式光伏承载力更高,且系统网络损耗更低.

关键词: 分布式光伏中压配电网电压越限反向过载承载力改进模拟退火-粒子群算法    
Abstract:

Large-scale distributed photovoltaic grid-connection has brought serious power back-feeding to the medium-voltage distribution network, resulting in node voltage limit violations and reverse overload of distribution transformers in the medium-voltage distribution network. An evaluation model for distributed photovoltaic hosting capacity in medium-voltage distribution networks was established, and an improved simulated annealing-particle swarm optimization (SA-PSO) algorithm was proposed. The system power flow balance, node voltage deviation, reverse load rate of distribution transformers, and line current carrying capacity were taken as constraints, and the distributed photovoltaic equivalent grid-connection capacity was taken as the objective function, which was the difference between the distributed photovoltaic grid-connection capacity and the system network loss. The distributed photovoltaic hosting capacity calculation was performed on the IEEE33 system and an actual medium-voltage distribution network. Results showed that the established distributed photovoltaic hosting capacity evaluation model was suitable for evaluating the stability of node voltage and safe operation of distribution transformers in medium-voltage distribution networks. Compared with other algorithms, the improved SA-PSO algorithm improved the convergence speed and optimization ability of the evaluation model calculation. Under the same constraints, the obtained line distributed photovoltaic hosting capacity was higher and the system network loss was lower, compared with those of other algorithms.

Key words: distributed photovoltaic    medium voltage distribution network    voltage violation    reverse overload    hosting capacity    improved simulated annealing-particle swarm optimization algorithm
收稿日期: 2023-07-29 出版日期: 2024-05-25
CLC:  TK 51  
基金资助: 国家电网公司总部科技资助项目(5400-202224153A-1-1-ZN).
作者简介: 门茂琛(1970—),男,教授级高级工程师,从事建筑电气、建筑智能化、电气消防研究. orcid.org/0009-0002-9680-2456. E-mail:596472039@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
门茂琛
赵睿
张金帅
王鹏
张庆

引用本文:

门茂琛,赵睿,张金帅,王鹏,张庆. 基于改进模拟退火-粒子群的配电网分布式光伏承载力评估[J]. 浙江大学学报(工学版), 2024, 58(6): 1255-1265.

Maochen MEN,Rui ZHAO,Jinshuai ZHANG,Peng WANG,Qing ZHANG. Evaluation of distributed photovoltaic hosting capacity of distribution networks based on improved simulated annealing-particle swarm optimization. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1255-1265.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.015        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1255

图 1  含分布式光伏的中压配电网模型
图 2  IEEE33系统结构图
图 3  分布式光伏并网对电压的影响
评估等级$\lambda $电网状态
绿色$\lambda \leqslant 0$负荷满足分布式电源就地消纳
黄色$0 < \lambda \leqslant 80{\text{%}} $负荷水平无法满足就地消纳,新增分布式电源发电在满足电网安全稳定约束前提下向上级电网反送
红色$\lambda > 80{\text{%}} $所在变电站区域内用电负荷已无法满足分布式电源就地就近消纳需求,电网运行安全存在风险
表 1  反向负载率评估等级
图 4  分布式光伏并网对网损的影响
分布式电源类型短路电流注入能力
逆变电源100%~400%,持续时间取决于控制装置
同步发电机500%~1000%,几个周波后衰减到200%~400%
感应发电机500%~1000%,10个周波衰减至可忽略
表 2  不同类型分布式电源的短路电流注入能力
PPV/MW短路点位置Ik/kAIk.PV/kAαk/%
262.4030.0371.52
141.5020.0412.73
281.3210.0151.14
562.4530.0873.64
141.5550.0946.03
281.3390.0332.53
表 3  短路电流计算结果
图 5  改进SA-PSO算法流程图
图 6  单节点接入的分布式光伏承载力
并网类型PPV/kWPloss/kWρ/%
分散型并网2 088.1282.5756
紧凑型并网1 286.8161.0334
表 4  多节点接入的分布式光伏承载力
图 7  多节点接入的分布式光伏承载力
算法PPV/kWPloss/kWρ/%收敛次数
PSO
GA8 434.31165.30227500
APSO8 588.14176.40231500
改进SA-PSO8 653.09159.8723340
表 5  IEEE33系统下的算法结果对比
图 8  IEEE33系统下的分布式光伏承载力
图 9  某地市一条10 kV配电线路结构图
图 10  光伏出力与负荷的变化
节点i节点jZSj/(kV·A)Pload.j/(kV·A)
010.149+j0.047 110021.95+j4.457
120.203+j0.064 120034.60+j10.092
230.278+j0.087 931536.30+j15.464
340.058+j0.018 410016.80+j2.394
450.240+j0.076 05031.64+j6.425
560.448+j0.081 010038.40+j15.177
670.462+j0.083 410025.65+j10.138
780.243+j0.043 810013.85+j4.552
290.202+j0.036 41605.50+j1.996
9100.244+j0.044 010016.60+j4.160
9110.233+j0.042 210031.85+j23.888
3120.174+j0.031 410034.70+j15.810
5130.145+j0.026 220016.55+j2.358
13140.363+j0.065 510018.55+j2.494
13150.230+j0.041 610012.80+j6.199
7160.237+j0.042 920037.95+j5.408
16170.284+j0.051 210010.70+j5.182
17180.201+j0.036 32008.75+j2.876
18190.102+j0.018 51004.70+j0.670
19200.128+j0.023 210013.50+j3.938
18210.171+j0.030 910011.75+j3.427
表 6  配电线路参数
算法PPV/kWPloss/kWρ/%收敛次数
PSO
GA2 169.3723.34501600
APSO2 206.1224.15509500
改进SA-PSO2 283.0422.0652750
表 7  实际线路上的算法结果对比
图 11  实际线路上的分布式光伏承载力
线路光伏并网点主要限制因素
IEEE 331、2、5、6、7、8、9、18、20、22、25、26反向负载率越限
10、11、12、13、14、15、16、17、
20、21、24、27、28、29、30、31、32
节点电压越限
3、4、19、23支路载流量越限
实际线路1、2、3、4、5、9、11、12、13反向负载率越限
6、7、8、14、15、16、17、18、19、20、21节点电压越限
表 8  限制各节点分布式光伏容量增大主要因素
1 BOUGUERRA S, YAICHE M R, GASSAB O, et al The impact of PV panel positioning and degradation on the pv inverter lifetime and reliability[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9 (3): 3114- 3126
doi: 10.1109/JESTPE.2020.3006267
2 任冲, 柯贤波, 王吉利, 等 高比例新能源电网新能源功率优化分配方法[J]. 电力工程技术, 2022, 41 (3): 110- 117
REN Chong, KE Xianbo, WANG Jili, et al New energy power optimal distribution method for high proportion new energy power grid[J]. Electric Power Engineering Technology, 2022, 41 (3): 110- 117
doi: 10.12158/j.2096-3203.2022.03.013
3 仲泽天, 李梦月, 王加澍, 等 一种有源配电网分布式光伏消纳能力评估方法[J]. 电网与清洁能源, 2023, 39 (2): 60- 68
ZHONG Zetian, LI Mengyue, WANG Jiashu, et al An assessment method for distributed photovoltaic absorption capacity of active distribution networks[J]. Power System and Clean Energy, 2023, 39 (2): 60- 68
doi: 10.3969/j.issn.1674-3814.2023.02.009
4 JAIN A K, HOROWITZ K, DING F, et al Dynamic hosting capacity analysis for distributed photovoltaic resources: framework and case study[J]. Applied Energy, 2020, 280: 115633
doi: 10.1016/j.apenergy.2020.115633
5 梁海平, 王翠, 王正平, 等 基于改进FPA算法的配电网光伏消纳能力评估[J]. 可再生能源, 2019, 37 (2): 190- 198
LIANG Haiping, WANG Cui, WANG Zhengping, et al Evaluation of distributed photovoltaic integration capacity based on improved FPA algorithm[J]. Renewable Energy Resources, 2019, 37 (2): 190- 198
doi: 10.3969/j.issn.1671-5292.2019.02.006
6 谭笑, 王主丁, 李强, 等 计及多约束的多分布式电源接入配电网最大承载力分段算法[J]. 电力系统自动化, 2020, 44 (4): 72- 80
TAN Xiao, WANG Zhuding, LI Qiang, et al Segmentation algorithm for maximum hosting capacity of distributed generator accessing to distribution network considering multiple constraints[J]. Automation of Electric Power Systems, 2020, 44 (4): 72- 80
7 KOIRALA A, VAN ACKER T, D’HULST R, et al Hosting capacity of photovoltaic systems in low voltage distribution systems: a benchmark of deterministic and stochastic approaches[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111899
doi: 10.1016/j.rser.2021.111899
8 HAN C, LEE D, SONG S, et al Probabilistic assessment of PV hosting capacity under coordinated voltage regulation in unbalanced active distribution networks[J]. IEEE Access, 2022, 10: 35578- 35588
doi: 10.1109/ACCESS.2022.3163595
9 董昱, 董存, 于若英, 等 基于线性最优潮流的电力系统新能源承载能力分析[J]. 中国电力, 2022, 55 (3): 1- 8
DONG Yu, DONG Cun, YU Ruoying, et al Renewable energy capacity assessment in power system based on linearized OPF[J]. Electric Power, 2022, 55 (3): 1- 8
10 刘科研, 盛万兴, 马晓晨, 等 基于多种群遗传算法的分布式光伏接入配电网规划研究[J]. 太阳能学报, 2021, 42 (6): 146- 155
LIU Keyan, SHENG Wanxing, MA Xiaochen, et al Planning research of distributed photovoltaic source access distribution network based on multi-population genetic algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42 (6): 146- 155
11 陈德炜, 施永明, 徐威, 等 基于改进FPA算法的含分布式光伏配电网选址定容多目标优化方法[J]. 电力系统保护与控制, 2022, 50 (7): 120- 125
CHEN Dewei, SHI Yongming, XU Wei, et al Multi-objective optimization method for location and capacity of a distribution network with distributed photovoltaic energy based on an improved FPA algorithm[J]. Power System Protection and Control, 2022, 50 (7): 120- 125
12 张嘉澍, 吕泉, 郭雪丽, 等 考虑合理弃光的配电网光伏最大接入容量研究[J]. 太阳能学报, 2023, 44 (2): 418- 426
ZHANG Jiashu, LYU Quan, GUO Xueli, et al Research on maximum PV access capacity in distribution network considering proper power curtailment[J]. ACTA Energiae Solaris Sinica, 2023, 44 (2): 418- 426
13 张长庚 考虑含光伏接入的配电网故障特性研究[J]. 电网与清洁能源, 2022, 38 (12): 138- 146
ZHANG Changgeng Research on fault characteristics of the distribution network considering access of photovoltaic[J]. Power System and Clean Energy, 2022, 38 (12): 138- 146
doi: 10.3969/j.issn.1674-3814.2022.12.018
14 李建军, 杜松怀, 杨德昌 集中光伏电源接入对低压配电网电压的影响[J]. 智慧电力, 2020, 48 (4): 21- 27
LI Jianjun, DU Songhuai, YANG Dechang Influence of concentrated photovoltaic power supply access on voltage of low voltage distribution network[J]. Smart Power, 2020, 48 (4): 21- 27
15 国家能源局. 分布式电源接入电网承载力评估导则: DL/T2041—2019 [S]. 北京: 中国标准出版社, 2019.
16 SINGH P, PRADHAN A K A local measurement based protection technique for distribution system with photovoltaic plants[J]. IET Re-newable Power Generation, 2020, 14 (6): 996- 1003
doi: 10.1049/iet-rpg.2019.0996
17 邓景松, 王英民, 孙迪飞, 等 基于配电网电流保护约束的分布式光伏电源容量分析[J]. 电工技术学报, 2019, 34 (Suppl.2): 629- 636
DENG Jingsong, WANG Yingmin, SUN Difei, et al Capacity analysis of distributed photovoltaic generation based on current protection in distribution network[J]. Transactions of China Electrotechnical Society, 2019, 34 (Suppl.2): 629- 636
18 梁志峰, 夏俊荣, 孙檬檬, 等 数据驱动的配电网分布式光伏承载力评估技术研究[J]. 电网技术, 2020, 44 (7): 2430- 2439
LIANG Zhifeng, XIA Junrong, SUN Mengmeng, et al Data driven assessment of distributed photovoltaic hosting capacity in distribution network[J]. Power System Technology, 2020, 44 (7): 2430- 2439
19 邹宏亮, 韩翔宇, 廖清芬, 等 考虑电压质量与短路容量约束的分布式电源准入容量分析[J]. 电网技术, 2016, 40 (8): 2273- 2280
ZOU Hongliang, HAN Xiangyu, LIAO Qingfen, et al Penetration capacity calculation for distributed generation considering voltage quality and short circuit capacity constraints[J]. Power System Technology, 2016, 40 (8): 2273- 2280
20 中国国家标准化管理委员会. 电能质量 供电电压偏差: GB/T 12325—2008 [S]. 北京: 中国标准出版社, 2008.
21 国家电网公司. 配电网技术导则: Q-GDW10370—2016 [S]. 北京: 中国标准出版社, 2016.
22 王万良, 金雅文, 陈嘉诚, 等 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报:工学版, 2022, 56 (3): 531- 541
WANG Wanliang, JIN Yawen, CHEN Jiacheng, et al Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (3): 531- 541
23 ZHANG H, NI S Q. Train scheduling optimization for an urban rail transit line: a simulated-annealing algorithm using a large neighborhood search metaheuristic [EB/OL]. [2023-05-01]. https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:000903625000001.
24 LUO Z M, MA J L, JIANG Z Q Research on power system dispatching operation under high proportion of wind power consumption[J]. Energies, 2022, 15 (18): 6819
doi: 10.3390/en15186819
25 丁明, 方慧, 毕锐, 等 基于集群划分的配电网分布式光伏与储能选址定容规划[J]. 中国电机工程学报, 2019, 39 (8): 2187- 2201
DING Ming, FANG Hui, BI Rui, et al Optimal siting and sizing of distributed PV-storage in distribution network based on cluster partition[J]. Proceedings of the CSEE, 2019, 39 (8): 2187- 2201
[1] 邓舒文,邵旭东,晏班夫,邱明红. 轻型组合桥梁负弯矩区接缝抗弯性能试验[J]. 浙江大学学报(工学版), 2024, 58(2): 399-412.
[2] 陈曦泽,贾俊峰,白玉磊,郭彤,杜修力. 基于XGBoost-SHAP的钢管混凝土柱轴向承载力预测模型[J]. 浙江大学学报(工学版), 2023, 57(6): 1061-1070.
[3] 张敏,邓明科,智奥龙,宋诗飞,陈晖. 纤维织物增强高延性混凝土加固RC梁的受弯性能[J]. 浙江大学学报(工学版), 2022, 56(9): 1693-1703.
[4] 唐晓武,邹渊,林维康,赵文芳,王天琦. 开孔管桩真空固结提高承载力模型试验[J]. 浙江大学学报(工学版), 2022, 56(7): 1320-1327.
[5] 高鹏,曾学波,吴宜龙,彭飞. 碳纤维布约束型钢混凝土矩形柱轴压承载力[J]. 浙江大学学报(工学版), 2022, 56(5): 890-900, 908.
[6] 王震,丁智,张霄,周奇辉,张成全. 考虑椭圆度缺陷的盾构管片结构极限承载性能研究[J]. 浙江大学学报(工学版), 2022, 56(11): 2290-2302.
[7] 曾丹,刘扬,曹磊. 钢-UHPC组合结构新型剪力件的抗剪性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1714-1724.
[8] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[9] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[10] 胡文韬,刘豆,耿大新,王宁,徐长节,上官兴,闵婕. 水平受荷阶梯形变截面桩的内力及变形分析[J]. 浙江大学学报(工学版), 2020, 54(4): 739-747.
[11] 汪劲丰,张爱平,王文浩. 栓钉高度对栓钉连接件抗剪性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2076-2084.
[12] 王忠瑾, 张日红, 王奎华, 方鹏飞, 谢新宇, 徐韩强, 李金柱. 能源载体条件下静钻根植桩承载特性[J]. 浙江大学学报(工学版), 2019, 53(1): 11-18.
[13] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493.
[14] 王强, 金凌志, 曹霞, 吕海波. 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 922-930.
[15] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.