Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (7): 1320-1327    DOI: 10.3785/j.issn.1008-973X.2022.07.007
土木工程、水利工程、交通工程     
开孔管桩真空固结提高承载力模型试验
唐晓武1,2(),邹渊1,2,林维康1,2,赵文芳1,2,王天琦1,2
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江省城市地下空间开发工程技术研究中心,浙江 杭州 310058
Model experiment on improving bearing capacity of perforated pipe piles by vacuum consolidation
Xiao-wu TANG1,2(),Yuan ZOU1,2,Wei-kang LIN1,2,Wen-fang ZHAO1,2,Tian-qi WANG1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Hangzhou 310058, China
 全文: PDF(2108 KB)   HTML
摘要:

为了研究桩基承载力的增长程度、桩周土的抗剪强度和含水率变化规律、桩周土排水量,开展真空固结模型试验,得到模型桩的Q-s曲线、桩周土的十字板强度和含水率的分布规律、排水量随时间的增长曲线. 结果表明,在该试验条件下,开孔管桩真空固结技术可以使桩基承载力提高2.7倍,使桩周形成厚4.5 cm、较高抗剪强度、较低含水率的致密层. 研究桩身开孔布置的影响,得出桩基承载力的增长程度受开孔层间距的影响较大,受孔径的影响很小.

关键词: 开孔管桩真空固结承载力黏土    
Abstract:

Vacuum consolidation model tests were conducted in order to analyze the growth degree in bearing capacity of pile foundation, the variation of shear strength and water content of soil around the pile, as well as the water discharge of surrounding soil. The Q-s curves of model piles and the distributions of vane shear strength and water content of soil around piles, and curves of water drainage with time were obtained. Results show that the vacuum consolidation technology can increase the bearing capacity of pile foundation by 2.7 times under the conditions of the tests, and form a dense layer around the pile, which is 4.5 cm thick with relatively high shear strength and relatively low water content. The influence of holes layout was analyzed. The bearing capacity of pile foundation was greatly affected by the spacing of hole layers, but little affected by dimension of holes.

Key words: perforated pipe pile    vacuum consolidation    bearing capacity    clay
收稿日期: 2021-07-06 出版日期: 2022-07-26
CLC:  TU 473  
基金资助: 国家自然科学基金资助项目(51779218);浙江省水利科技计划资助项目(RB2027)
作者简介: 唐晓武(1966—),男,教授,博导,从事软土地基处理、土工合成材料及土遗址保护的研究. orcid.org/0000-0002-0916-8761. E-mail: tangxiaowu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
唐晓武
邹渊
林维康
赵文芳
王天琦

引用本文:

唐晓武,邹渊,林维康,赵文芳,王天琦. 开孔管桩真空固结提高承载力模型试验[J]. 浙江大学学报(工学版), 2022, 56(7): 1320-1327.

Xiao-wu TANG,Yuan ZOU,Wei-kang LIN,Wen-fang ZHAO,Tian-qi WANG. Model experiment on improving bearing capacity of perforated pipe piles by vacuum consolidation. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1320-1327.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.007        https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1320

图 1  真空固结装置的示意图
图 2  真空固结装置的实物图
试验组 模型桩 开孔参数
排数 孔径/mm 层间距/cm
P0 无孔
P1 7 7 7.5
P2 3 7 15
P3 5 7 10
P4 7 7 7.5
P5 9 7 6
P6 11 7 5
P7 5 5 10
P8 5 7 10
P9 5 9 10
表 1  模型桩的开孔参数
图 3  模型桩(试验组Ⅰ)
参数 数值 参数 数值
ww /% 59.68 Sr /% 98.4
Gs 2.69 wL /% 49.2
γ/(kN·m?3) 16.3 wp /% 27.1
e 1.64 k/(cm·s?1) 1.4×10?7
表 2  土样的基本物理参数
图 4  土样的e-p曲线
图 5  模型桩P1排水量随抽真空时间的变化曲线
图 6  单桩静荷载试验的加载阶段
图 7  十字板强度和含水率的测点布置
图 8  试验组Ⅰ模型桩的Q-s曲线
图 9  试验组Ⅱ和Ⅲ各模型桩的Q-s曲线
图 10  模型桩P1桩周土不同位置的十字板强度
图 11  试验组Ⅱ和Ⅲ中E列测点的十字板强度
图 12  模型桩P1桩周土不同位置含水率
图 13  试验组Ⅱ和Ⅲ中F列测点的含水率
1 刘松玉, 周建, 章定文, 等 地基处理技术进展[J]. 土木工程学报, 2020, 53 (4): 93- 110
LIU Song-yu, ZHOU Jian, ZHANG Ding-wen, et al State of the art of the ground improvement technology in China[J]. China Civil Engineering Journal, 2020, 53 (4): 93- 110
2 吴燕开, 方磊, 李新伟, 等 预应力管桩联合塑料排水板加固软土地基技术探讨[J]. 岩石力学与工程学报, 2006, (Supple.2): 3572- 3576
WU Yan-kai, FANG Lei, LI Xin-wei, et al Technical discussion on tube pile combined with prefabricated strip drain to soft soil treatment[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, (Supple.2): 3572- 3576
3 宋义仲, 马凤生, 赵西久, 等. 填芯管桩水泥土复合基桩的施工方法: CN102127910A [P]. 2011-07-20.
SONG Yi-zhong, MA Feng-sheng, ZHAO Xi-jiu, et al. The construction method of the composite pile composed of jet-mixing cement and PHC pile with core concrete: CN102127910A [P]. 2011-07-20.
4 宋义仲, 卜发东, 程海涛, 等 管桩水泥土复合基桩承载性能试验研究[J]. 工程质量, 2012, 30 (5): 12- 16
SONG Yi-zhong, BU Fa-dong, CHENG Hai-tao, et al Experimental study on bearing properties of tubular cement composite pile[J]. Construction Quality, 2012, 30 (5): 12- 16
doi: 10.3969/j.issn.1671-3702.2012.05.004
5 李俊才, 张永刚, 邓亚光, 等 管桩水泥土复合桩荷载传递规律研究[J]. 岩石力学与工程学报, 2014, 33 (Supple.1): 3068- 3076
LI Jun-cai, ZHANG Yong-gang, DENG Ya-guang, et al Load transfer mechanism of composite pile composed of jet-mixing cement and PHC pile with core concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (Supple.1): 3068- 3076
6 张永刚, 李俊才, 邓亚光 管桩水泥土复合桩荷载传递机制试验研究[J]. 南京工业大学学报:自然科学版, 2013, 35 (6): 79- 85
ZHANG Yong-gang, LI Jun-cai, DENG Ya-guang Experimental study of load transfer mechanism of composite pile of jet-mixing cement and PHC pile[J]. Journal of Nanjing University of Technology: Natural Science Edition, 2013, 35 (6): 79- 85
7 刘汉龙. 一种抗液化排水刚性桩: CN2873886Y [P]. 2007-02-28.
LIU Han-long. A kind of rigid drainage pile of mitigation of liquefaction: CN2873886Y [P]. 2007-02-28.
8 杨耀辉, 陈育民, 刘汉龙, 等 排水刚性桩单桩抗液化性能的振动台试验研究[J]. 岩土工程学报, 2018, 40 (2): 287- 295
YANG Yao-hui, CHEN Yu-min, LIU Han-long, et al Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (2): 287- 295
doi: 10.11779/CJGE201802009
9 杨耀辉, 陈育民, 刘汉龙, 等 排水刚性桩群桩抗液化性能的振动台试验研究[J]. 岩土力学, 2018, 39 (11): 4025- 4032
YANG Yao-hui, CHEN Yu-min, LIU Han-long, et al Investigation on liquefaction resistance performance of rigid-drainage pile groups by shaking table[J]. Rock and Soil Mechanics, 2018, 39 (11): 4025- 4032
10 江强, 陈育民, 王翔鹰, 等 排水刚性桩沉桩挤土效应的现场试验研究[J]. 土木工程学报, 2018, 51 (4): 87- 93
JIANG Qiang, CHEN Yu-min, WANG Xiang-ying, et al Field tests on squeezing effects of the rigid-drainage pile[J]. China Civil Engineering Journal, 2018, 51 (4): 87- 93
11 WANG S, NI P, CHEN Z, et al Consolidation solution of soil around a permeable pipe pile[J]. Marine Georesources and Geotechnology, 2020, 38 (9): 1097- 1105
doi: 10.1080/1064119X.2019.1655119
12 唐晓武, 俞悦, 周力沛, 等. 一种能排水并增大摩阻力的预制管桩及其施工方法: CN104846809A [P]. 2015-08-19.
TANG Xiao-wu, YU Yue, ZHOU Li-pei, et al. A prefabricated pipe pile with drainage and enlarged friction resistance and its construction method: CN104846809A [P]. 2015-08-19.
13 唐晓武, 杨晓秋, 俞悦 开孔管桩复合地基排水固结解析解[J]. 岩土力学, 2019, 40 (4): 1248- 1254
TANG Xiao-wu, YANG Xiao-qiu, YU Yue Analytical solutions to drained consolidation of porous pipe pile[J]. Rock and Soil Mechanics, 2019, 40 (4): 1248- 1254
14 唐晓武, 柳江南, 杨晓秋, 等 开孔管桩动孔压消散特性的理论研究[J]. 岩土力学, 2019, 40 (9): 3335- 3343
TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, et al Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile[J]. Rock and Soil Mechanics, 2019, 40 (9): 3335- 3343
15 黄勇, 王军, 梅国雄 透水管桩加速超静孔压消散的单桩模型试验研究[J]. 岩土力学, 2016, 37 (10): 2893- 2898
HUANG Yong, WANG Jun, MEI Guo-xiong Model experimental study of accelerating dissipation of excess pore water pressure in soil around a permeable pipe pile[J]. Rock and Soil Mechanics, 2016, 37 (10): 2893- 2898
16 NI P, MANGALATHU S, MEI G X, et al Laboratory investigation of pore pressure dissipation in clay around permeable piles[J]. NRC Research Press, 2017, 55 (9): 1257- 1267
17 NI P, MANGALATHU S, MEI G X, et al Permeable piles: an alternative to improve the performance of driven piles[J]. Computers and Geotechnics, 2017, 84: 78- 87
doi: 10.1016/j.compgeo.2016.11.021
18 陈科林, 雷金波 有孔管桩开孔应力集中系数试验研究[J]. 岩土力学, 2015, 36 (4): 1078- 1084
CHEN Ke-lin, LEI Jin-bo Experimental study of stress concentration factors of hollow pipe-piles[J]. Rock and Soil Mechanics, 2015, 36 (4): 1078- 1084
19 NI P, MANGALATHU S, MEI G X, et al Compressive and flexural behaviour of reinforced concrete permeable piles[J]. Engineering Structures, 2017, 147: 316- 327
doi: 10.1016/j.engstruct.2017.06.007
20 乐腾胜, 雷金波, 周星, 等 有孔管桩单桩承载性状试验及分析[J]. 岩土力学, 2016, 37 (Supple.2): 415- 420
YUE Teng-sheng, LEI Jin-bo, ZHOU Xing, et al Test and analysis of bearing capacity behavior of pipe-pile with holes[J]. Rock and Soil Mechanics, 2016, 37 (Supple.2): 415- 420
21 孙立强, 闫澍旺, 李伟, 等 超软土真空预压室内模型试验研究[J]. 岩土力学, 2011, 32 (4): 984- 990
SUN Li-qiang, YAN Shu-wang, LI Wei, et al Study of super-soft soil vacuum preloading model test[J]. Rock and Soil Mechanics, 2011, 32 (4): 984- 990
doi: 10.3969/j.issn.1000-7598.2011.04.005
22 王军, 蔡袁强, 符洪涛, 等 新型防淤堵真空预压法室与现场试验研究[J]. 岩石力学与工程学报, 2014, 33 (6): 1257- 1268
WANG Jun, CAI Yuan-qiang, FU Hong-tao, et al Indoor and field experiment on vacuum preloading with new anti-clogging measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (6): 1257- 1268
23 龚晓南, 岑仰润 真空预压加固软土地基机理探讨[J]. 哈尔滨建筑大学学报, 2002, 35 (2): 7- 10
GONG Xiao-nan, CEN Yang-run Mechanism of vacuum preloading[J]. Journal of Harbin University of Civil Engineering and Architecture, 2002, 35 (2): 7- 10
24 WANG J, CAI Y, MA J, et al Improved vacuum preloading method for consolidation of dredged clay-slurry fill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 42 (11): 06016012
[1] 高鹏,曾学波,吴宜龙,彭飞. 碳纤维布约束型钢混凝土矩形柱轴压承载力[J]. 浙江大学学报(工学版), 2022, 56(5): 890-900, 908.
[2] 曾丹,刘扬,曹磊. 钢-UHPC组合结构新型剪力件的抗剪性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1714-1724.
[3] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[4] 王亮,谢海建,吴家葳,陈云敏,丁昊. 填埋场成层衬垫污染物运移参数等效模型[J]. 浙江大学学报(工学版), 2021, 55(3): 519-529.
[5] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[6] 郑晴晴,夏唐代,张孟雅,周飞. 间歇性循环荷载下原状淤泥质软黏土应变预测模型[J]. 浙江大学学报(工学版), 2020, 54(5): 889-898.
[7] 胡文韬,刘豆,耿大新,王宁,徐长节,上官兴,闵婕. 水平受荷阶梯形变截面桩的内力及变形分析[J]. 浙江大学学报(工学版), 2020, 54(4): 739-747.
[8] 汪劲丰,张爱平,王文浩. 栓钉高度对栓钉连接件抗剪性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2076-2084.
[9] 凌道盛,李奖,王文军,胡成宝. 人工制备土的结构性及其对应变局部化的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1689-1696.
[10] 王忠瑾, 张日红, 王奎华, 方鹏飞, 谢新宇, 徐韩强, 李金柱. 能源载体条件下静钻根植桩承载特性[J]. 浙江大学学报(工学版), 2019, 53(1): 11-18.
[11] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493.
[12] 吴建奇, 杨骁, 徐旭, 刘飞禹. 部分排水条件下饱和红黏土循环试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1309-1316.
[13] 王强, 金凌志, 曹霞, 吕海波. 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 922-930.
[14] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.
[15] 张如如,赵云,徐文杰,黄博,凌道盛,韩黎明. 温度作用下机场跑道土基中水气运移规律分析[J]. 浙江大学学报(工学版), 2016, 50(5): 822-830.