Please wait a minute...
浙江大学学报(工学版)
土木工程     
活性粉末混凝土梁抗剪性能试验研究
王强, 金凌志, 曹霞, 吕海波
1.桂林理工大学 土木与建筑工程学院,广西 桂林 541004; 2.广西岩土力学与工程重点实验室,广西 桂林 541004)
Experimental study on shear performance of reactive powder concrete beam
WANG Qiang, JIN Ling-zhi, CAO Xia, LV Hai-bo
1. College of Civil Engineering, Gui Lin University of Technology, Guilin 541004, China; 2. Guangxi Key Laboratory of Rocksoil Mechanics and Engineering, Guilin 541004,China
 全文: PDF(1187 KB)   HTML
摘要:

为研究HRB500级钢筋活性粉末混凝土(RPC)梁的抗剪工作性能,制作14根试验梁进行四点加载试验,分别考虑剪跨比、钢纤维体积率、配箍率、配筋率以及纵筋强度等方面的影响.通过观察构件斜裂缝开展情况、破坏形态,并分析混凝土应变和剪力-位移曲线等试验数据,得出这些因素对试验梁开裂荷载、抗剪承载力与剪切延性的影响规律,通过现有规范以及塑性剪切理论对RPC梁的抗剪承载力模型及公式进行探讨.结果表明:在一定范围内,构件抗剪承载力随钢纤维体积率、配箍率、配筋率以及纵筋强度的提高而增大,随剪跨比的增加而降低,影响程度各不相同.剪跨比对斜裂缝的倾角与构件的破坏形态影响较大,钢纤维体积率为2%~3%时的抗剪工作性能最优,在一定范围内提高配箍率能够有效改善剪切延性.在现有规范中,CECS 382004公式的计算结果与实测值最为接近,且变异系数最小,基于塑性剪切理论所计算的结果更加精确,该理论模型可以用于RPC梁的抗剪承载力公式的推导.

Abstract:

Fourteen HRB500 reinforced RPC beams were tested to analyze the shear performance of them. The influence of shear span ratio, steel fiber content, stirrup ratio, reinforcement ratio and reinforcement strength was considered. The cracks and failure mode of the beams were observed. The concrete strain and load-deflection relationship were analyzed. The regulation of the beam’s cracking load, shear capacity and ductility was drawn. The model and formula of shear capacity of RPC beams were discussed through the codes and plastic shear theory. Results show that: The shear capacity can be improved by the increase of steel fiber content, stirrup ratio, reinforcement ratio and reinforcement strength and reduced by the increase of shear span ratio in certain range. The inclination angle of cracks and failure mode of the beams are mainly influenced by shear span ratio. The optimal content of steel fiber should be between 2%-3%. The shear ductility can be obviously improved by the increase of stirrup ratio in certain range. In the codes, the results of formula in CECS 38-2004 are most close to the test values, and the variation coefficient is the smallest. The results based on the plastic shear theory are more accurate and its model can be used for the derivation of the shear capacity formula of RPC beams.

出版日期: 2017-05-01
CLC:  TU 375.1  
基金资助:

国家自然科学基金资助项目(51368013);广西岩土力学与工程重点实验室基金资助项目(2015-A-02,2015-B-03).

作者简介: 王强(1979—),男,副教授,从事结构新材料新工艺等研究. ORCID: 0000-0001-5701-4997. E-mail:632544958@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王强, 金凌志, 曹霞, 吕海波. 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.05.011.

WANG Qiang, JIN Ling-zhi, CAO Xia, LV Hai-bo. Experimental study on shear performance of reactive powder concrete beam. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.05.011.

参考文献(References):
[1] RICHARD P, CHEYREZY M.Composition of reactive powder concretes [J].Cement and Concrete Research, 1995, 25(7): 1501-1511.
[2] DUGAT J, ROUX N, BEMIER G. Mechanical properties of reactive powder concretes [J].Materials and Structures, 1996, 29(5): 233-240.
[3] 鞠彦忠,王德弘,康孟新.不同钢纤维体积率活性粉末混凝土力学性能的试验研究[J].应用基础与工程科学学报,2013, 21(2): 299306.
JU Yan-zhong,WANG De-hong, KANG Meng-xin. Mechanical properties of RPC with different steel fiber contents [J]. Journal of Basic Science and Engineering, 2013, 21(2): 299-306.
[4] 王晓飞,王阳平.钢纤维活性粉末混凝土力学特性[J].建筑材料学报,2015,18(6): 941-945.
WANG Xiao-fei, WANG Yang-ping. Mechanical properties of RPC with different steel fiber Volume contents [J]. Journal of Building Materials, 2015, 18(6): 941-945.
[5] VOO Y L, FOSTER S J, GILBERT R I. Shear strength of fiber reinforced reactive powder concrete girders without stirrups [D]. Australia: The University of New South Wales, 2003.
[6] VOO Y L, FOSTER S J, GILBERT R I. Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups [J].ACI Structural Journal, 2006, 4(1): 123-132.
[7] 季文玉,丁波,安明喆.活性粉末混凝土T形梁抗剪试验研[J].中国铁道科学,2011,32(5): 38-41.
JI Wen-yu, DING Bo, AN Ming-zhe. Experimental study on the shear capacity of reactive powder concrete T-beams [J]. China Railway Science, 2011, 32(5): 38-41.
[8] 邓宗才,周冬至,程舒锴.配筋活性粉末混凝土梁抗剪承载力[J].哈尔滨工程大学学报,2014, 35(12): 1512-1578.
DENG Zong-cai, ZHOU Dong-zhi, CHENG Shu-kai. The shear bear capacity of reactive powder concrete beam with high strength stirrup [J]. Journal of Harbin Engineering University, 2014, 35(12): 1512-1578.
[9] GB50010—2010.混凝土结构设计规范[S].北京:中国建筑工业出版社, 2010
GB 50010—2010. Code for design of concrete structures[S]. Beijing: China Architecture and Building Press,2010.
[10] 王晓锋,傅剑平,朱爱萍,等.配置HRB500级钢筋混凝土柱抗震性能模拟分析[J].建筑结构学报,2011,32(8): 99-105.
WANG Xiao-feng, FU Jian-ping, ZHU Ai-ping, et al. Numerical simulation of seismic behavior of RC columns reinforced with HRB500 steel bars [J]. Journal of Building Structures, 2011,32(8): 99-105.
[11] 金伟良,陆春华,王海龙,等.500级高强钢筋混凝土梁裂缝宽度试验及计算方法探讨[J].土木工程学报,2011,44(3): 1622.
JIN Wei-liang, LU Chun-hua, WANG Hai-long, et al. Experiment and calculation of crack width of reinforced concrete beams with 500MPa steel bars [J]. China Civil Engineering Journal, 2011, 44(3): 16-22.
[12] 易伟建,潘柏荣,吕艳梅.HRB500级钢筋配箍的混凝土梁受剪性能试验研究[J].土木工程学报,2012,45(4): 56-42.
YI Wei-jian, PAN Bai-rong, LV Yan-mei. Experimental study on the shear failure of reinforced concrete beams with grade HRB500 steel stirrups [J]. China Civil Engineering Journal, 2012, 45(4): 56-42.
[13] 蒋遨宇,陈驹,金伟良.HRB500级钢筋混凝土梁受弯性能分析[J].浙江大学学报:工学版,2013,47(9): 1566-1572/1671.
JIANG Ao-yu, CHEN Ju, JIN Wei-liang. Flexural behaviour analysis of HRB500 reinforced concrete beams [J]. Journal of Zhejiang University :Engineering science, 2013, 47 (9): 1566-1572/1671.
[14] 邓宗才,袁常兴.高强钢筋与活性粉末混凝土黏结性能的试验研究[J].土木工程学报,2014,47(3): 69-78.
DENG Zong-cai, YUAN Chang-xing. Experimental study on bond capability between high strength rebar and reactive powder concrete [J]. China Civil Engineering Journal, 2014,47(3): 69-78.
[15] 李莉.活性粉末混凝土梁受力性能及设计方法研究[D].哈尔滨:哈尔滨工业大学,2010.
LI Li. Mechanical behavior and design method for reactive powder concrete beams [D].Harbin: Harbin Institute of Technology, 2010.
[16] 陈彬.预应力RPC梁抗剪性能研究[D].长沙:湖南大学,2007.
CHEN Bin. Study on the shear strength of prestressed RPC girders [D]. Changsha: Hunan University,2007.
[17] PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings [M]. New York: John Wiley & Sons, Inc., 1992.
[18] CECS 104: 99.高强混凝土结构技术规程[S].北京:中国建筑工业出版社,1999.
CECS 104: 99. Technical specification for high-strength concrete structures [S].Beijing: China Architecture & Building Press, 1999.
[19] CECS 38—2004.纤维混凝土结构技术规程[S]. 北京:中国计划出版社, 2004.
CECS 38—2004. Technical specification for fiber reinforced concrete structures [S]. Beijing: China Planning Press, 2004.
[20] ACI318-05. Building code requirements for structural concrete (ACI318-05) and Commentary (ACI318R-05) [S]. Farmington Hills: American Concrete Institute,2005.
[21] 赵军,高丹盈,朱海堂.钢纤维增强钢筋混凝土梁斜截面受剪承载力塑性极限分析[J].力学季刊,2005,26(2): 235-240.
ZHAO Jun, GAO Dan-ying, ZHU Hai-tang. Shear capacity plastic analysis of steel fiber reinforced concrete beams with reinforcement [J]. Chinese Quarterly of Mechanics, 2005, 26(2): 235-240.
[22] GRAYBEAL B A. Characterization of the behavior of Ultra-High performance concrete [D]. American: The University of Maryland, 2005.
[1] 金伟良, 周峥栋, 张军, 毛江鸿, 崔磊, 潘崇根. 基于动态压磁的锈蚀钢筋疲劳特性的试验研究[J]. 浙江大学学报(工学版), 2017, 51(2): 225-230.
[2] 杨涛,邹道勤. 基于XFEM的钢筋混凝土梁开裂数值模[J]. J4, 2013, 47(3): 495-501.
[3] 李富强, 刘国华, 吴志根. 基于双谱和奇异值分解的结构损伤试验[J]. J4, 2012, 46(10): 1872-1879.