Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
基于动态压磁的锈蚀钢筋疲劳特性的试验研究
金伟良, 周峥栋, 张军, 毛江鸿, 崔磊, 潘崇根
1. 浙江大学 结构工程研究所,浙江 杭州 310058
2. 浙江大学 宁波理工学院,浙江 宁波 315100
Experimental research on fatigue properties of corroded steel bars based on dynamic piezomagnetism
JIN Wei liang, ZHOU Zheng dong, ZHANG Jun,MAO Jiang hong, CUI Lei, PAN Chong gen
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China;
2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
 全文: PDF(3003 KB)   HTML
摘要:

为了解决传统锈蚀钢筋疲劳性能研究中检测方法有限、评估疲劳损伤困难等不足,研究一种新型的基于压磁效应的无损检测方法.通过对28根不同锈蚀率下的加速锈蚀钢筋进行轴向拉伸疲劳试验,研究疲劳损伤过程中压磁信号的演变规律,挖掘压磁信号与钢筋锈蚀程度之间的关系.试验结果表明:压磁信号对钢筋疲劳损伤有较好的敏感性,结合磁感强度值时变曲线、磁感强度-应变滞回曲线等压磁信息,能够反映钢筋的疲劳损伤累积过程、锈蚀程度及塑性状态.试验成果为结构的损伤评估和寿命预测提供了一个有效的无损检测方法.

Abstract:

A new nondestructive method based on piezomagnetic effect was investigated in order to solve the problems of traditional methods, such as there are few approaches and difficulties of damage assessment when studying the fatigue performance of corroded steel bars.Axial tensile fatigue tests of 26 corrosionaccelerated steel bars were carried out to analyze the evolution of magnetic signals in the process of fatigue. The relationship between magnetic signal and corrosion degree of steel was explored. Testing results demonstrate that piezomagnetic signal is very sensitive to steel fatigue damage. The accumulation of fatigue damage, corrosion degree and plastic state can be reflected effectively using the information of the piezomagnetic time-varying curve and the piezomagnetic hysteretic loop. The achievements provide an effective non-destructive testing method for the damage assessment and fatigue life prediction of structure.

出版日期: 2017-03-06
CLC:  TU 375.1  
基金资助:

国家自然科学基金资助项目(51278459,51541904,51509221, 51408544);国家“十一五”科技支撑资助项目(2015BAL02B03);浙江省自然科学基金资助项目(LQ14E080007, LY16E090007, LQ14E090002).

作者简介: 金伟良(1961—),男,教授,博导,从事混凝土结构基本理论研究.ORCID: 0000-0002-8475-8032. E-mail: jinwl@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

金伟良, 周峥栋, 张军, 毛江鸿, 崔磊, 潘崇根. 基于动态压磁的锈蚀钢筋疲劳特性的试验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.02.001.

JIN Wei liang, ZHOU Zheng dong, ZHANG Jun,MAO Jiang hong, CUI Lei, PAN Chong gen. Experimental research on fatigue properties of corroded steel bars based on dynamic piezomagnetism. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.02.001.

[1] SURESH S. Fatigue of materials \[M\] Cambridge: Cambrige University Press, 1988: 1.
[2] 陈传尧.疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002: 15.
[3] 孙莉,刘钊.20002008年美国桥梁倒塌案例分析与启示[J].世界桥梁,2009(3): 46-49.
SUN Li, LIU Zhao. Case analysis and lessons drawn from bridge failures in United States from 2000 to 2008[J]. World Bridges, 2009(3): 46-49.
[4] 张功义,张军,金伟良,等.基于压磁效应的磁性材料力学与疲劳的研究进展[J].材料导报, 2014, 28(5): 410,24.
ZHANG Gongyi, ZHANG Jun, JIN Weiliang, et al. Review of the mechanics and fatigue researches on magnetic materials based on piezomagnetic effect [J]. Materials Review, 2014, 28(5): 410,24.
[5] VANDENBOSSCHE L, DUPR L. Fatigue damage assessment by the continuous examination of the magnetomechanical and mechanical behavior [J]. Journal of Applied Physics, 2009, 105(7): 707.
[6] MIGNOGNA R B, BROWNING V, GUBSER D U, et al. Passive nondestructive evaluation of ferromagnetic materials during deformation using SQUID gradiometers [J]. IEEE Transaction on Applied Superconductivity, 1993, 3(1): 1922-1925.
[7] GURALNICK S A, BAO S, ERBER T. Piezomagnetism and fatigue: Ⅱ[J]. Journal of Physics D: Applied Physics, 2008, 41(11): 1-11.
[8] BAO S, JIN W L, GURALNICK S A, et al. Two-parameter characterization of low cycle hysteretic fatigue data [J]. Journal of Zhejiang University: Applied Physics and Engineering, 2010, 11(6): 449-454.
[9] BAO S, ERBER T, GURALNICK S A, et al. Fatigue, magnetic and mechanical hysteresis [J]. Strain, 2011, 47(4): 372-381.
[10] 金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报:工学版,2002,36(4): 371380, 403.
JIN Weiliang, ZHAO Yuxi. Stateoftheart on durability of concrete structures [J]. Journal of Zhejiang University :Engineering Science, 2002,36(4): 371380, 403.
[11] 曹建安,文雨松.锈蚀钢筋的疲劳试验研究[J].长沙铁道学院学报,1998,16(4): 1518.
CAO Jianan, WEN Yusong. Fatigue experimental study on corrosion reinforcement [J]. Journal of Changsha Railway University, 1998,16(4): 1518.
[12] 李士彬,张伟平,顾祥林,等.加速锈蚀钢筋的疲劳试验研究[J].铁道学报,2010,32(5): 9397.
LI Shibin, ZHANG Weiping, GU Xianglin, et al. Experimental study on fatigue properties of corrosion accelerated steel bars [J]. Journal of the China Railway Society, 2010,32(5): 9397.
[13] 冷建成.基于磁记忆技术的铁磁性材料早期损伤诊断方法研究[D].哈尔滨:哈尔滨工业大学,2012.
LENG J C. Research on early damage diagnosis method of ferromagnetic materials based on magnetic memory testing technique[D]. Harbin: Harbin Institute of technology.
[14] 宛德福,马兴隆.磁性物理学[M].成都: 电子科技大学出版社, 1994: 185-228.
[15] JILES D C. Theory of the magnetomechanical effect[J]. Journal of Physics DApplied Physics, 1995, 28(8): 1537-1546.
[16] LI L, JILES D C. Modeling of the magnetomechanical effect: Application of the Rayleigh law to the stress domain [J]. Journal of Applied Physics, 2003, 93(10): 84808482.
[17] JILES D C, LI L. A new approach to modeling the magnetomechanical effect [J]. Journal of Applied Physics, 2004, 95(11): 7058-7060.
[18] 张伟平,李士彬,顾祥林,等.自然锈蚀钢筋的轴向拉伸疲劳试验[J].中国公路学报, 2009,22(2): 53-58.
ZHANG Weiping, LI Shibin, GU Xianglin, et al. Experiment on axial tensile fatigue of naturally corroded steel bar [J]. China Journal of Highway and Transport, 2009, 22(2): 53-58.

[1] 王强, 金凌志, 曹霞, 吕海波. 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 922-930.
[2] 杨涛,邹道勤. 基于XFEM的钢筋混凝土梁开裂数值模[J]. J4, 2013, 47(3): 495-501.
[3] 李富强, 刘国华, 吴志根. 基于双谱和奇异值分解的结构损伤试验[J]. J4, 2012, 46(10): 1872-1879.