Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (8): 1541-1550    DOI: 10.3785/j.issn.1008-973X.2023.08.007
计算机技术     
多信息融合的时空图卷积交通流量预测模型
孟闯(),王慧*()
内蒙古工业大学 数据科学与应用学院,内蒙古 呼和浩特 010080
Traffic flow prediction model based on spatio-temporal graph convolution with multi-information fusion
Chuang MENG(),Hui WANG*()
College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
 全文: PDF(1445 KB)   HTML
摘要:

为了深入挖掘交通流量的时空特征以提高预测精度,提出改进的融合距离与周期性因素的多信息融合的时空图卷积门控神经网络. 将路网中各个路段作为节点并根据路段间邻接关系建立路网图结构;考虑路段间距离对空间相关性的影响,计算路段之间的空间影响度大小,给予图邻接矩阵不同的权重. 在模型构建中,设计空间图卷积模块与时间序列预测模块;通过空间图卷积模块提取空间特征信息,并将提取的空间特征信息与交通流量周期序列信息相融合,传入时间序列预测模块;重新设计门控循环单元(GRU)的门控机制算法达到多源信息共同输入的目的,最终得到预测输出. 实验在真实的公路交通流量PEMS数据集上进行多时段测试,结果表明,与目前基于图卷积的预测方法相比,所设计的模型预测误差更低,预测性能更优.

关键词: 智能交通交通流量预测时空序列预测时空相关性图卷积网络门控循环单元    
Abstract:

An improved spatio-temporal graph convolution gated neural network with multi-information fusion of distance and periodic factors was proposed, in order to further explore the spatio-temporal characteristics of traffic flow and improve the prediction accuracy. Each section of the road network was taken as the node and the road network diagram structure was established according to the adjacency relationship between the sections. Considering the influence of distance between sections on spatial correlation, the spatial influence degree between sections was calculated, and different weight values were given to the adjacency matrix of the graph. In the model construction, space graph convolution module and time series prediction module were designed. The spatial feature information was extracted by the spatial graph convolution module, and the extracted spatial feature information was fused with the traffic flow cycle sequence information, and then introduced into the time series prediction module. The gating mechanism algorithm of gated recurrent unit (GRU) was redesigned to achieve the purpose of multi-source information input, and finally the predictive output was obtained. The real highway traffic flow PEMS data set was used for multi-period testing. Experimental results show that the prediction error of the proposed model is lower and the prediction performance is better than that of the current prediction method based on graph convolution.

Key words: intelligent transportation    traffic flow forecasting    spatio-temporal sequence prediction    spatio-temporal correlation    graph convolutional network    gating recurrent uint
收稿日期: 2022-09-16 出版日期: 2023-08-31
CLC:  TP 181  
基金资助: 内蒙古自治区自然科学基金资助项目(2021MS06019);内蒙古高等学校科学研究资助项目(NJZY21317);内蒙古自治区直属高校基本科研业务费资助项目(JY20222077)
通讯作者: 王慧     E-mail: 1415547767@qq.com;1227001857@qq.com
作者简介: 孟闯(1997—),男,硕士生,从事时空数据预测、机器学习、智慧交通等研究. orcid.org/0000-0001-6580-1325. E-mail: 1415547767@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孟闯
王慧

引用本文:

孟闯,王慧. 多信息融合的时空图卷积交通流量预测模型[J]. 浙江大学学报(工学版), 2023, 57(8): 1541-1550.

Chuang MENG,Hui WANG. Traffic flow prediction model based on spatio-temporal graph convolution with multi-information fusion. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1541-1550.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.08.007        https://www.zjujournals.com/eng/CN/Y2023/V57/I8/1541

图 1  基于图结构的交通流量建模
图 2  路段定义表示图
图 3  邻接矩阵的构建
图 4  融合周期时间序列
图 5  深度时空图卷积门控神经网络模型架构图
图 6  改进的GRU单元的门控机制
数据集 检测器数量 时间范围 数据量
PEMS03 358 2018.09.01—2018.11.30 26208×358
PEMS03-33 33 2018.09.01—2018.11.30 26208×33
PEMS04 307 2018.01.01—2018.02.28 16992×307
PEMS08 170 2016.07.01—2016.08.31 17856×170
表 1  交通流量实验数据集总览
Ns Ne dis
311903 318282 0.600
311930 318282 0.600
312010 313772 4.274
312098 314371 6.036
$\vdots $ $\vdots $ $\vdots $
318844 318775 0.302
表 2  检测器位置与邻接位置关系表
$t$ /min PEMS04 PEMS08
RMSE MAE RMSE MAE
5 28.34 18.13 21.54 14.13
10 29.34 18.55 22.25 14.61
15 30.02 19.19 23.02 15.09
20 30.86 19.72 23.78 15.76
25 31.47 20.25 24.32 16.06
30 32.17 20.78 24.83 16.31
35 33.07 21.31 25.46 16.83
40 33.81 21.85 25.81 17.02
45 34.24 22.38 26.43 17.34
50 34.72 22.91 26.91 17.56
55 35.68 23.52 27.15 17.90
60 36.37 23.98 27.64 18.35
表 3  模型在不同预测时间范围下的RMSE与MAE误差结果
图 7  不同模型在多个预测时间范围下的MAE及RMSE
模型 PEMS04 PEMS08
RMSE MAE RMSE MAE
LSTM 43.17 28.83 33.18 23.30
GRU 42.83 28.32 32.97 23.15
STGCN[18] 38.29 25.15 27.87 18.88
MCSTGCN[15] 35.64 22.73 26.47 17.47
STSGCN[19] 33.65 21.19 26.80 17.13
ASTGCN[20] 32.82 21.80 25.27 16.63
本研究模型 32.51 21.04 24.92 16.41
表 4  不同模型在PEMS04、PEMS08数据集上的误差
图 8  改进邻接矩阵对模型误差的影响
图 9  模型在不同数据集上的交通流量预测结果
1 祁朵, 毛政元 基于自适应时序剖分与KNN的短时交通流量预测[J]. 地球信息科学学报, 2022, 24 (2): 339- 351
QI Duo, MAO Zheng-yuan Short-term traffic flow prediction based on adaptive time Slice and KNN[J]. Journal of Geo-Information Science, 2022, 24 (2): 339- 351
2 康军, 段宗涛, 唐蕾, 等 一种LS-SVM在线式短时交通流预测方法[J]. 计算机应用研究, 2018, 35 (10): 2965- 2968
KANG Jun, DUAN Zong-tao, TANG Lei, et al LS-SVM online shrot traffic flow prediction method[J]. Computer Application Research, 2018, 35 (10): 2965- 2968
3 林浩, 李雷孝, 王慧, 等 基于相关向量机和模糊综合评价的路况预测模型[J]. 浙江大学学报: 工学版, 2021, 55 (6): 1072- 1082
LIN Hao, LI Lei-xiao, WANG Hui, et al Model based on relevance vector machine and fuzzy comprehensive evaluation for road condition prediction[J]. Journal of ZheJiang University: Engineering Science, 2021, 55 (6): 1072- 1082
4 KANG D Q, LV Y S, CHEN Y Y. Short-term traffic flow prediction with LSTM recurrent neural network[C]// 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Yokohama: IEEE, 2017: 1-6.
5 GAO Y, ZHOU C J, RONG J, et al, Short-term traffic speed forecasting using a deep Learning method based on multitemporal traffic flow volume[J]. IEEE Access, 2022, 10: 82384-82395.
6 ZHENG Z, CHEN W, WU X, et al LSTM network: a deep learning approach for short-term traffic forecast[J]. Intelligent Transport Systems, 2017, 11 (2): 68- 75
doi: 10.1049/iet-its.2016.0208
7 SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[J]. MIT Press, 2015, 1: 802-810.
8 晏臻, 于重重, 韩璐, 等 基于CNN+LSTM的短时交通流量预测方法[J]. 计算机工程与设计, 2019, 40 (9): 2620- 2624+2659
YAN Zhen, YU Chong-chong, HAN Lu, et al Short-term traffic flow forecasting method based on CNN+LSTM[J]. Computer Engineering and Design, 2019, 40 (9): 2620- 2624+2659
doi: 10.16208/j.issn1000-7024.2019.09.038
9 王婧娟, 陈庆奎 一种时空注意力网络的交通预测模型[J]. 小型微型计算机系统, 2021, 42 (2): 303- 307
WANG Jin-juan, CHEN Qing-kui Traffic prediction model based on spationtemporal attention network[J]. Mini Microcomputer System, 2021, 42 (2): 303- 307
10 罗文慧, 董宝田, 王泽胜 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17 (5): 68- 74
LUO Wen-hui, DONG Bao-tian, WANG Ze-sheng Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Transportation System Engineering and Information, 2017, 17 (5): 68- 74
doi: 10.16097/j.cnki.1009-6744.2017.05.010
11 叶景, 李丽娟, 唐臻旭 基于CNN-XGBoost的短时交通流预测[J]. 计算机工程与设计, 2020, 41 (4): 1080- 1086
YE Jing, LI Li-juan, TANG Zhen-xu Short-term traffic flow prediction based on CNN-XGBoost[J]. Computer Engineering and Design, 2020, 41 (4): 1080- 1086
doi: 10.16208/j.issn1000-7024.2020.04.030
12 THOMAS N, KIP T, WELLING M. Semi-supervised classification with graph convolutional networks [C]// International Conference on Learning Representations. Toulon: ICLR Institute, 2017.
13 SEO Y, DEFFER M, VANDERG P, et al. Structured sequence modeling with graph convolutional recurrent networks [C]// Processing of the 25th International Conference (ICONIP 2018). Siem Reap: Asia Pacific Neural Network Society, 2018: 362-373.
14 LI Y , YU R , SHAHABI C , et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C]// International Conference on Learning Representations. Vancouver: ICLR Institute, 2018.
15 冯宁, 郭晟楠, 宋超, 等 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30 (3): 759- 769
FENG Ning, GUO Sheng-nan, SONG Chao, et al Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30 (3): 759- 769
doi: 10.13328/j.cnki.jos.005697
16 杨建喜, 郁超顺, 李韧, 等 基于多周期组件时空神经网络的路网通行速度预测[J]. 交通运输系统工程与信息, 2021, 21 (3): 112- 119+139
YANG Jian-xi, YU Chao-shun, LI Ren, et al Traffic network speed prediction via multi-periodic-component spatialtemporal neural network[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (3): 112- 119+139
17 闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1147- 1155
YAN Xu, FAN Xiao-liang, ZHENG Chuan-pan, et al Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of ZheJiang University: Engineering Science, 2020, 54 (6): 1147- 1155
18 LI C , CUI Z , ZHENG W, et al. Spatio-temporal graph convolution for skeleton based action recognition [C]// 32th Association for the Advancement of Artificial Intelligence. New Orleans: AAAI Institute. 2018: 938-946.
19 SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting [C]// 34th Association for the Advancement of Artificial Intelligence. New York: AAAI Institute, 2020: 914-921.
20 GUO S , LIN Y , FENG N , et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C]// National Conference on Artificial Intelligence. 33th Association for the Advancement of Artificial Intelligence. Hawaii State: AAAI Institute, 2019: 922-929.
21 HU Y. Research on city traffic flow forecast based on graph convolutional neural network [C]// 2021 IEEE 2nd International Conference on Big Data. NanChang: Artificial Intelligence and Internet of Things Engineering, 2021: 269-273.
[1] 赵嘉墀,王天琪,曾丽芳,邵雪明. 基于GRU的扑翼非定常气动特性快速预测[J]. 浙江大学学报(工学版), 2023, 57(6): 1251-1256.
[2] 程艳芬,吴家俊,何凡. 基于关系门控图卷积网络的方面级情感分析[J]. 浙江大学学报(工学版), 2023, 57(3): 437-445.
[3] 张京京,张兆功,许鑫. 融合图增强和采样策略的图卷积协同过滤模型[J]. 浙江大学学报(工学版), 2023, 57(2): 243-251.
[4] 徐维祥,康楠,徐婷. 基于出行计划数据的最优路径规划方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1542-1552.
[5] 侯越,韩成艳,郑鑫,邓志远. 基于时空融合图卷积的交通流数据修复方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1394-1403.
[6] 郭策,曾志文,朱鹏铭,周智千,卢惠民. 基于图卷积模仿学习的分布式群集控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1055-1061.
[7] 徐小高,夏莹杰,朱思雨,邝砾. 基于强化学习的多路口可变车道协同控制方法[J]. 浙江大学学报(工学版), 2022, 56(5): 987-994, 1005.
[8] 王友卫,童爽,凤丽洲,朱建明,李洋,陈福. 基于图卷积网络的归纳式微博谣言检测新方法[J]. 浙江大学学报(工学版), 2022, 56(5): 956-966.
[9] 王婷,朱小飞,唐顾. 基于知识增强的图卷积神经网络的文本分类[J]. 浙江大学学报(工学版), 2022, 56(2): 322-328.
[10] 钟帆,柏正尧. 采用动态残差图卷积的3D点云超分辨率[J]. 浙江大学学报(工学版), 2022, 56(11): 2251-2259.
[11] 黄炜,陈田,吴入军. 基于门控循环单元与误差修正的短期负荷预测[J]. 浙江大学学报(工学版), 2021, 55(9): 1625-1633.
[12] 刘兴,余建波. 注意力卷积GRU自编码器及其在工业过程监控的应用[J]. 浙江大学学报(工学版), 2021, 55(9): 1643-1651.
[13] 张楠,董红召,佘翊妮. 公交专用道条件下公交车辆轨迹的Seq2Seq预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1482-1489.
[14] 黄靖,钟书远,文元桥,罗坤. 用于交通流预测的自适应图生成跳跃网络[J]. 浙江大学学报(工学版), 2021, 55(10): 1825-1833.
[15] 王敬昌,陈岭,余珊珊,蒋晨书,吴勇. 基于门控循环单元的多因素感知短期游客人数预测模型[J]. 浙江大学学报(工学版), 2019, 53(12): 2357-2364.