浙江大学学报(工学版)  2022, Vol. 56 Issue (5): 947-955    DOI: 10.3785/j.issn.1008-973X.2022.05.012
 土木工程

Coupled analysis on surface runoff and soil water movement by finite volume method
Gen LI(),Tong-chun HAN*(),Jun-yang WU,Yu ZHANG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1594 KB)   HTML

Abstract:

Coupled analysis on the surface runoff model and the soil water movement model was carried out, in order to consider the influence of surface runoff under heavy rainfall condition on soil infiltration. The surface runoff was simulated using the Navier-Stokes equation, while the soil water movement was simulated using the Richards equation. Both equations were solved by the finite volume method. The simulation results of coupled model were compared with the calculated results of SEEP/W under the same calculation condition, in order to verify the correctness of the coupled model. And then the soil slope infiltration was calculated under heavy rainfall condition. Results show that water heads at the crest of slope and the base of slope are significantly different and the infiltration depths at the crest of slope and the base of slope are also different, which implies that the soil infiltration can be greatly improved by the surface runoff. The soil slope infiltration intensity is indeed increased with the increasement of the surface runoff.

Key words: surface runoff    soil infiltration    numerical simulation    finite volume method    coupled model

 CLC: TU 46

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 李根 韩同春 吴俊扬 张宇

#### 引用本文:

Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.

#### 链接本文:

 图 1  地表径流一维模型概念图 图 2  地表径流方程时间空间离散分布图 图 3  相邻控制单元网格关系图 图 4  相邻控制单元非正交网格向量图 图 5  地表径流与土壤水流耦合流程图 图 6  相同固定水头条件下耦合模型与SEEP/W实例结果比较 图 8  相同固定通量条件下耦合模型与SEEP/W实例结果对比 图 7  土柱初始水头数值模拟分布图 图 9  土坡数值模拟模型尺寸图 图 10  数值模拟中降雨强度随时间变化图 图 11  A-A剖面坡顶和B-B剖面坡顶水头随时间变化图 图 12  边坡坡面水头随时间变化图 图 13  t=3 h时刻A-A剖面和B-B剖面入渗深度情况
 1 FU J, HUANG S L, DING X, et al Influence of rainfall on transient seepage field of deep landslides: a case study of area II of Jinpingzi landslide[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570 (2): 022056 doi: 10.1088/1755-1315/570/2/022056 2 XIONG X, SHI Z, XIONG Y, et al Unsaturated slope stability around the Three Gorges Reservoir under various combinations of rainfall and water level fluctuation[J]. Engineering Geology, 2019, 261: 105231 doi: 10.1016/j.enggeo.2019.105231 3 袁俊平, 殷宗泽 考虑裂隙非饱和膨胀土边坡入渗模型与数值模拟[J]. 岩土力学, 2004, 25 (10): 1581- 1586 YUAN Jun-ping, YIN Zong-ze Numerical model and simulation of expensive soils slope infiltration considered fissures[J]. Rock and Soil Mechanics, 2004, 25 (10): 1581- 1586 doi: 10.3969/j.issn.1000-7598.2004.10.014 4 张培文, 刘德富, 黄达海, 等 饱和-非饱和非稳定渗流的数值模拟[J]. 岩土力学, 2003, (6): 927- 930 ZHANG Pei-wen, LIU De-fu, HUANG Hai-da, et al Saturated and unsaturated unsteady seepage flow numerical simulation[J]. Rock and Soil Mechanics, 2003, (6): 927- 930 doi: 10.3969/j.issn.1000-7598.2003.06.011 5 ZHAO R J The Xinanjiang model applied in China[J]. Journal of Hydrology, 1992, 135 (1−4): 371- 381 doi: 10.1016/0022-1694(92)90096-E 6 WANG Z J, TIMLIN D, KOUZNETSOV M, et al Coupled model of surface runoff and surface-subsurface water movement[J]. Advances in Water Resources, 2020, 137: 103499 doi: 10.1016/j.advwatres.2019.103499 7 ZHANG H, ZHANG F, SHEN K, et al A surface and subsurface model for the simulation of rainfall infiltration in slopes[J]. IOP Conference Series: Earth and Environmental Science, 2015, 26 (1): 012025 8 刘育田, 刘俊新 地表径流与地下渗流耦合的斜坡降雨入渗研究[J]. 路基工程, 2010, (3): 80- 82 LIU Yu-tian, LIU Jun-xin The study of the slope rainfall infiltration considered the couple of surface runoff and subsurface water movement[J]. Subgrade Engineering, 2010, (3): 80- 82 doi: 10.3969/j.issn.1003-8825.2010.03.031 9 汤有光, 郭轶锋, 吴宏伟, 等 考虑地表径流与地下渗流耦合的斜坡降雨入渗研究[J]. 岩土力学, 2004, (9): 1347- 1352TANG You-guang, GUO Yi-feng, WU Hong-wei, et al the study of slope rainfall infiltration considered surface surface and subsurface water movement[J]. Rock and Soil Mechanics, 2004, (9): 1347- 1352 10 TAN J, SONG H, ZHANG H, et al Numerical investigation on infiltration and runoff in unsaturated soils with unsteady rainfall intensity[J]. Water, 2018, 10 (7): 914 doi: 10.3390/w10070914 11 JOHNSON M, LOAICIGA H, WANG X X Coupled infiltration and kinematic-wave runoff simulation in slopes: implications for slope stability[J]. Water, 2017, 9 (5): 327 doi: 10.3390/w9050327 12 ZHU Y L, LSHIKAWA T, SUBRAMANIAN S S, et al Simultaneous analysis of slope instabilities on a small catchment-scale using coupled surface and subsurface flows[J]. Engineering Geology, 2020, 275: 105750 doi: 10.1016/j.enggeo.2020.105750 13 PATO F J, ARANDA M S, NAVARRO G P A 2D finite volume simulation tool to enable the assessment of combined hydrological and morphodynamical processes in mountain catchments[J]. Advances in Water Resources, 2020, 141: 103617 doi: 10.1016/j.advwatres.2020.103617 14 PATO F J, VOULLIEME C D, NAVARRO G P Rainfall/runoff simulation with 2D full shallow water equations: sensitivity analysis and calibration of infiltration parameters[J]. Journal of Hydrology, 2016, 536: 496- 513 doi: 10.1016/j.jhydrol.2016.03.021 15 DELESTRE O, DARBOUX F, JAMES F, et al FullSWOF: a free software package for the simulation of shallow water flows[J]. EprintArxiv, 2014, 480 (10): 233- 265 16 BOICHUT F. Nonlinear stability of finite volume methods for hyperbolic conservation laws [M]. Berlin: Springer Science and Business Media, 2004. 17 GODLEWSKI E, RAVIART P. Numerical approximation of hyperbolic systems of conservation laws [M]. Berlin: Springer, 2013. 18 CHOW V T. Open-channel hydraulics [M]. New York: McGraw-Hill, 1959. 19 GREENBERG J, LEROUX A A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[J]. SIAM Journal on Numerical Analysis, 1996, 33 (1): 1- 16 doi: 10.1137/0733001 20 AUDUSSE E, BOUCHUT F, BRISTEAU M, et al A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. SIAM Journal on Scientific Computing, 2004, 25 (6): 2050- 2065 doi: 10.1137/S1064827503431090 21 FIEDLER F, RAMIREZ J A numerical method for simulating discontinuous shallow flow over an infiltrating surface[J]. International Journal for Numerical Methods in Fluids, 2000, 32 (2): 219- 239 doi: 10.1002/(SICI)1097-0363(20000130)32:2<219::AID-FLD936>3.0.CO;2-J 22 RICHARDS L Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1 (5): 318- 333 doi: 10.1063/1.1745010 23 MCBRIDE D, CROSS M, CROFT N, et al Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries[J]. International Journal for Numerical Methods in Fluids, 2006, 50 (9): 1085- 1117 doi: 10.1002/fld.1087 24 HILLS R, PORRO L, HUDSON D, et al Modeling one-dimensional infiltration into very dry soils: 1. model development and evaluation[J]. Water Resources Research, 1989, 25 (6): 1259- 1269 doi: 10.1029/WR025i006p01259 25 HAO X, ZHANG R, KRAVCHENKO A A mass-conservative switching method for simulating saturated-unsaturated flow[J]. Journal of Hydrology, 2005, 311 (1–4): 254- 265 doi: 10.1016/j.jhydrol.2005.01.019 26 JASAK H. Error analysis and estimation for the finite volume method with applications to fluid flows[D]. London: Imperial College London, 1996. 27 CELIA M, BOULOUTAS E, ZARBA R A general mass-conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research, 1990, 26 (7): 1483- 1496 doi: 10.1029/WR026i007p01483 28 Van GENUCHTEN M T A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44 (5): 892- 898 doi: 10.2136/sssaj1980.03615995004400050002x
 [1] 刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578. [2] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597. [3] 纪超,张庆河,马殿光,吴岳峰,姜奇. 基于新型三维辐射应力的近岸波流耦合模型[J]. 浙江大学学报(工学版), 2022, 56(1): 128-136. [4] 张军,崔玉敏,何宏舟. 电场作用下液液系统中液滴变形的计算模型[J]. 浙江大学学报(工学版), 2021, 55(7): 1391-1398. [5] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134. [6] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461. [7] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347. [8] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794. [9] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857. [10] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714. [11] 李薇,邹吉玉,胡鹏. 基于孔隙率和局部时间步长的城市洪水模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 614-622. [12] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388. [13] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127. [14] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100. [15] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.