Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2275-2285    DOI: 10.3785/j.issn.1008-973X.2021.12.007
土木工程、交通工程     
基于时间序列与DEGWO-SVR模型的隧道变形预测方法
朱宝强(),王述红*(),张泽,王鹏宇,董福瑞
东北大学 资源与土木工程学院, 辽宁 沈阳 110819
Prediction method of tunnel deformation based on time series and DEGWO-SVR model
Bao-qiang ZHU(),Shu-hong WANG*(),Ze ZHANG,Peng-yu WANG,Fu-rui DONG
School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
 全文: PDF(1551 KB)   HTML
摘要:

为了对准确预测隧道变形的非等距性及复杂非线性特征,结合时序分析理论、差分进化算法(DE)、灰狼优化算法(GWO)和支持向量回归机(SVR)模型,提出新的隧道变形预测模型. 利用3次样条函数插值法将非等距监测数据等距化;基于时间序列原理将变形分解为趋势项及平稳随机项,并采用所提模型分别对2个分解项进行预测;将各位移分量叠加,实现隧道累积变形的预测. 以重庆市兴隆隧道实测拱顶沉降为例,预测前方ZK37+900和ZK37+910断面拱顶沉降,并与已有模型进行对比. 结果表明:所提模型预测的均方根误差分别为0.193 7 、0.086 9 mm,平均绝对百分比误差分别为1.21%、0.55%,相关系数分别为0.997 1、0.992 8. 相比于已有模型,所提模型的预测精度更高、误差更小,具有更好的适用性及应用前景.

关键词: 隧道工程隧道变形预测时间序列差分进化(DE)灰狼优化(GWO)支持向量回归(SVR)    
Abstract:

Combining time series analysis, differential evolution (DE), grey wolf optimizer (GWO), and support vector regression (SVR), a new prediction model of tunnel deformation was proposed, in order to accurately predict tunnel deformation has the characteristics of non-equidistant and complex nonlinear. Firstly, non-equidistant data was processed equidistantly by cubic-spline function interpolation. Then based on the time series principle, the deformation were decomposed into the trend terms and stationary random terms. The proposed model was used to predict the two terms. Finally, the displacement components were superimposed to realize the prediction of the tunnel cumulative deformation. Taking the measured vault settlement of Xinglong Tunnel in Chongqing as an example, the vault settlement of the front ZK37+900 and ZK37+910 section was predicted and compared with existing models. Results showed that the root-mean-square error were 0.193 7 mm and 0.086 9 mm, the mean-absolute-percent error were 1.21 % and 0.55 %, and the correlation coefficient were 0.997 1 and 0.992 8. Compared with the existing models, the proposed model has higher prediction accuracy and smaller error, it has better applicability and application prospects.

Key words: tunnel engineering    tunnel deformation prediction    time series    differential evolution (DE)    grey wolf optimizer (GWO)    support vector regression (SVR)
收稿日期: 2021-01-07 出版日期: 2021-12-31
CLC:  U 459  
基金资助: 国家自然科学基金资助项目(U1602232);中央高校基本科研业务专项资金资助项目(2101018);辽宁省重点研发计划资助项目(2019JH2/10100035)
通讯作者: 王述红     E-mail: zbq2289675237@163.com;wangshuhong@mail.neu.edu.cn
作者简介: 朱宝强(1995—),男,硕士生,从事隧道与地下工程研究. orcid.org/0000-0003-0173-4519. E-mail: zbq2289675237@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
朱宝强
王述红
张泽
王鹏宇
董福瑞

引用本文:

朱宝强,王述红,张泽,王鹏宇,董福瑞. 基于时间序列与DEGWO-SVR模型的隧道变形预测方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2275-2285.

Bao-qiang ZHU,Shu-hong WANG,Ze ZHANG,Peng-yu WANG,Fu-rui DONG. Prediction method of tunnel deformation based on time series and DEGWO-SVR model. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2275-2285.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.007        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2275

图 7  不同模型的趋势项位移预测结果
函数 算法 vOS vW vAVG vSTD
f1(x) DE 8.21×10?4 1.83×10?3 1.25×10?3 2.26×10?4
f1(x) GWO 1.11×10?7 2.50×10?6 7.04×10?7 5.21×10?7
f1(x) DEGWO 0 6.21×10?7 1.77×10?7 1.68×10?7
f2(x) DE 6.41×10 8.51×10 7.57×10 6.41
f2(x) GWO 5.68×10?14 1.00×10 2.09 3.57
f2(x) DEGWO 0 7.16×10?12 1.07×10?12 2.31×10?12
表 1  测试函数效果对比
图 1  DEGWO-SVR模型预测流程
图 2  各监测断面变形测点布置
图 3  变形监测点位置平面图
图 4  工程地质剖面图
图 5  不同断面的等距时序数据
图 6  不同断面的趋势项及平稳随机项位移
监测断面 p/10?2 H
1% 5% 10%
ZK37+950 1.28 0 1 1
ZK37+940 1.48 0 1 1
ZK37+930 0.87 1 1 1
ZK37+920 0.38 1 1 1
ZK37+910 0.32 1 1 1
ZK37+900 0.30 1 1 1
表 2  随机项位移的ADF检验结果评价
模型 监测断面 位移分量 c g
DEGWO-SVR ZK37+900 趋势项 9.999 0.010
DEGWO-SVR ZK37+900 平稳随机项 7.185 2.707
DEGWO-SVR ZK37+910 趋势项 6.080 0.010
DEGWO-SVR ZK37+910 平稳随机项 28.350 1.669
SVM信息粒化 ZK37+900 趋势项 51.874 0.150
SVM信息粒化 ZK37+900 平稳随机项 26.164 0.713
SVM信息粒化 ZK37+910 趋势项 82.852 0.150
SVM信息粒化 ZK37+910 平稳随机项 12.170 0.315
SVM ZK37+900 趋势项 1.000 0.125
SVM ZK37+900 平稳随机项 1.000 0.125
SVM ZK37+910 趋势项 1.516 0.125
SVM ZK37+910 平稳随机项 8.000 0.125
表 3  不同预测模型最优参数寻优结果
模型 R RMSE/ mm MAPE/ %
ZK37+900 ZK37+910 ZK37+900 ZK37+910 ZK37+900 ZK37+910
DEGWO-SVR 0.999 6 0.999 7 0.187 0 0.057 6 1.25 0.39
SVM信息粒化 0.979 6 0.939 6 0.645 7 0.765 0 4.06 4.85
SVM 0.982 1 0.976 4 1.002 3 0.841 6 6.71 5.57
表 4  不同模型的趋势项位移预测精度及误差
图 8  不同模型的平稳随机项位移预测结果
模型 R RMSE/mm MAPE/%
ZK37+900 ZK37+910 ZK37+900 ZK37+910 ZK37+900 ZK37+910
DEGWO-SVR 0.957 4 0.918 6 0.079 5 0.084 4 26.51 77.04
SVM信息粒化 0.979 9 0.923 9 0.148 6 0.118 9 122.56 85.76
SVM 0.972 9 0.978 3 0.214 8 0.121 3 179.07 88.54
表 5  不同模型的平稳随机项位移预测精度及误差
图 9  不同模型的累积位移预测结果
模型 R RMSE/mm MAPE/%
ZK37+900 ZK37+910 ZK37+900 ZK37+910 ZK37+900 ZK37+910
DEGWO-SVR 0.997 1 0.992 8 0.193 7 0.086 9 1.21 0.55
SVM信息粒化 0.987 9 0.903 4 0.505 0 0.878 9 4.52 6.70
SVM 0.982 9 0.982 5 0.791 8 0.726 7 5.89 5.32
表 6  不同模型的累积位移预测精度及误差
图 10  ZK37+910断面初期变形预测结果
模型 R RMSE/mm MAPE/%
DEGWO-SVR 0.997 4 0.185 4 1.57
SVM信息粒化 0.993 1 0.704 9 6.53
SVM 0.997 1 0.792 7 7.02
表 7  ZK37+910断面初期变形预测精度及误差
1 WANG S H, NI P P, GUO M D Spatial characterization of joint planes and stability analysis of tunnel blocks[J]. Tunnelling and Underground Space Technology, 2013, 38: 357- 367
doi: 10.1016/j.tust.2013.07.017
2 刘新荣, 刘俊, 黄伦海, 等 黄土连拱隧道开挖的模型试验与压力拱分析[J]. 浙江大学学报:工学版, 2018, 52 (6): 1140- 1149
LIU Xin-rong, LIU Jun, HUANG Lun-hai, et al Model test and pressure arch analysis for excavation of loess double arch tunnel[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (6): 1140- 1149
3 王述红, 朱宝强 山岭隧道洞口段地表沉降时序预测研究[J]. 岩土工程学报, 2021, 43 (5): 813- 821
WANG Shu-hong, ZHU Bao-qiang Study on time series prediction of ground settlement at the entrance of mountain tunnel[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (5): 813- 821
4 SUWANSAWAT S, EINSTEIN H H Describing settlement troughs over twin tunnels using a superposition technique[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133 (4): 445- 468
doi: 10.1061/(ASCE)1090-0241(2007)133:4(445)
5 ZHAO C Y, LAVASAN A A, BARCIAGA T, et al Prediction of tunnel lining forces and deformations using analytical and numerical solutions[J]. Tunnelling and Underground Space Technology, 2017, 64: 164- 176
doi: 10.1016/j.tust.2017.01.015
6 丁智, 王凡勇, 魏新江 软土双线盾构施工地表变形实测分析与预测[J]. 浙江大学学报:工学版, 2019, 53 (1): 61- 68
DING Zhi, WANG Fan-yong, WEI Xin-jiang Prediction and analysis of surface deformation caused by twin shield construction in soft soil[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (1): 61- 68
7 LIU Z Q, GUO D, LACASSE S, et al Algorithms for intelligent prediction of landslide displacement[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2020, 21 (6): 412- 429
doi: 10.1631/jzus.A2000005?utm_campaign=Journal_of_Zhejiang_University-SCIENCE_A_(Applied_Physics_
8 TANG Y Q, CUI Z D, WANG J X, et al Application of grey theory-based model to prediction of land subsidence due to engineering environment in Shanghai[J]. Environmental Geology, 2008, 55 (3): 583- 593
doi: 10.1007/s00254-007-1009-y
9 张俊, 殷坤龙, 王佳佳, 等 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34 (2): 382- 391
ZHANG Jun, YIN Kun-long, WANG Jia-jia, et al Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (2): 382- 391
10 DU H, SONG D Q, CHEN Z, et al Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method[J]. Journal of Cleaner Production, 2020, 270: 122248
doi: 10.1016/j.jclepro.2020.122248
11 LIU K Y, LIU B G Intelligent information-based construction in tunnel engineering based on the GA and CCGPR coupled algorithm[J]. Tunnelling and Underground Space Technology, 2019, 88: 113- 128
doi: 10.1016/j.tust.2019.02.012
12 杨背背, 殷坤龙, 杜娟 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报, 2018, 37 (10): 2334- 2343
YANG Bei-bei, YIN Kun-long, DU Juan A model for predicting landslide displacement based on time series and long and short term memory neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (10): 2334- 2343
13 FENG X D, JIMENEZ R, ZENG P, et al Prediction of time-dependent tunnel convergences using a Bayesian updating approach[J]. Tunnelling and Underground Space Technology, 2019, 94: 103118
doi: 10.1016/j.tust.2019.103118
14 MAHDEVAR S, HAGHIGHAT H S, TORABI S R A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation[J]. Tunnelling and Underground Space Technology, 2013, 38: 59- 68
doi: 10.1016/j.tust.2013.05.002
15 SHI S S, ZHAO R J, LI S C, et al Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application[J]. Tunnelling and Underground Space Technology, 2019, 90: 1- 11
doi: 10.1016/j.tust.2019.04.013
16 XUE Y G, ZHANG X L, LI S C, et al Analysis of factors influencing tunnel deformation in loess deposits by data mining: a deformation prediction model[J]. Engineering Geology, 2018, 232: 94- 103
doi: 10.1016/j.enggeo.2017.11.014
17 张可能, 胡达, 何杰, 等 基于Kriging时空统一模型的隧道动态施工位移预测[J]. 中南大学学报:自然科学版, 2017, 48 (12): 3328- 3334
ZHANG Ke-neng, HU Da, HE Jie, et al Tunnel construction of dynamic displacement prediction based on unified space-time Kriging model[J]. Journal of Central South University: Science and Technology, 2017, 48 (12): 3328- 3334
doi: 10.11817/j.issn.1672-7207.2017.12.025
18 MIRJALILI S, MIRJALILI S M, LEWIS A Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69 (3): 46- 61
19 孙元春, 尚彦军 岩石隧道围岩变形时空效应分析[J]. 工程地质学报, 2008, 16 (2): 211- 215
SUN Yuan-chun, SHANG Yan-jun Integrated analysis of the tempo-spatial effect of surrounding rock deformation in tunneling[J]. Journal of Engineering Geology, 2008, 16 (2): 211- 215
doi: 10.3969/j.issn.1004-9665.2008.02.012
20 中华人民共和国交通运输部. 公路隧道施工技术规范: JTG F60—2009 [S]. 北京: 人民交通出版社, 2009: 32-34.
21 何亚伯, 梁城 非等距时间序列模型在隧道拱顶位移预测中的应用[J]. 岩石力学与工程学报, 2014, 33 (Suppl.2): 4096- 4101
HE Ya-bo, LIANG Cheng A non-equidistant time series model and its application in tunnel vault crown displacement prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (Suppl.2): 4096- 4101
22 李麟玮, 吴益平, 苗发盛, 等 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37 (6): 1395- 1406
LI Lin-wei, WU Yi-ping, MIAO Fa-sheng, et al Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (6): 1395- 1406
23 邓冬梅, 梁烨, 王亮清, 等 基于集合经验模态分解与支持向量机回归的位移预测方法: 以三峡库区滑坡为例[J]. 岩土力学, 2017, 38 (12): 3660- 3669
DENG Dong-mei, LIANG Ye, WANG Liang-qing, et al Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression: a case of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2017, 38 (12): 3660- 3669
24 VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 2000.
25 STORN R, PRICE K. Minimizing the real functions of the ICEC′96 contest by differential evolution [C]// Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya: IEEE, 2002: 842-844.
[1] 李文娟,邓洪高,马谋,蒋俊正. 基于图信号处理的传染病传播预测方法[J]. 浙江大学学报(工学版), 2022, 56(5): 1017-1024.
[2] 张楠,董红召,佘翊妮. 公交专用道条件下公交车辆轨迹的Seq2Seq预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1482-1489.
[3] 高新智,刘作军,张燕,陈玲玲. 基于GWO-SVM的下肢假肢穿戴者骑行相位识别[J]. 浙江大学学报(工学版), 2021, 55(4): 648-657.
[4] 陶成飞,周昊,胡流斌,刘子华,岑可法. 液雾燃烧的热声不稳定动态特性[J]. 浙江大学学报(工学版), 2021, 55(11): 2108-2114.
[5] 赵建平,李建武,毕林,程贝贝. 富水区隧道渗流场解析解及合理支护参数[J]. 浙江大学学报(工学版), 2021, 55(11): 2142-2150.
[6] 陈功,郑春华,翁献明,HAMEEDBaustani,胡鸿昊,马晓宇,柳景青. 基于多水文数据关联分析的雨水口异常诊断[J]. 浙江大学学报(工学版), 2021, 55(1): 55-61.
[7] 展鹏,陈琳,曹鲁慧,李学庆. 基于特征符号表示的网络异常流量检测算法[J]. 浙江大学学报(工学版), 2020, 54(7): 1281-1288.
[8] 王晨霖,杨洁,居文军,顾复,陈芨熙,纪杨建. 基于智能家电的短期电力负荷预测与削峰填谷优化[J]. 浙江大学学报(工学版), 2020, 54(7): 1418-1424.
[9] 汪子龙,王柱,於志文,郭斌,周兴社. 多源数据跨国人口迁移预测[J]. 浙江大学学报(工学版), 2019, 53(9): 1759-1767.
[10] 李麟玮, 吴益平, 苗发盛. 基于灰狼支持向量机的非等时距滑坡位移预测[J]. 浙江大学学报(工学版), 2018, 52(10): 1998-2006.
[11] 巫江虹, 姜峰. 基于动态负荷的空调生命周期气候性能[J]. 浙江大学学报(工学版), 2017, 51(10): 2061-2069.
[12] 蔡青林,陈岭,梅寒蕾,孙建伶. 基于两级过滤的时间序列近似查询[J]. 浙江大学学报(工学版), 2016, 50(7): 1290-1297.
[13] 魏媛,冯天恒,黄平捷,侯迪波,张光新. 管网水质多指标动态关联异常检测方法[J]. 浙江大学学报(工学版), 2016, 50(7): 1402-1409.
[14] 谭海龙, 刘康玲, 金鑫, 石向荣, 梁军. 基于μσ-DWC特征和树结构M-SVM的多维时间序列分类[J]. 浙江大学学报(工学版), 2015, 49(6): 1061-1069.
[15] 赵建军,王毅,杨利斌. 基于时间序列预测的威胁估计方法[J]. J4, 2014, 48(3): 398-403.