| 计算机技术与控制工程 |
|
|
|
|
| 井下轨道区域高精度实时分割网络 |
周华平1( ),邓彬2,孙克雷1,张咏琪3,4,吴涛5,吴劲5 |
1. 安徽理工大学 计算机科学与工程学院,安徽 淮南 232001 2. 安徽理工大学 电气与信息工程学院,安徽 淮南 232001 3. 安徽理工大学 工业粉尘防控与职业安全健康教育部重点实验室,安徽 淮南 232001 4. 安徽理工大学 安全科学与工程学院,安徽 淮南 232001 5. 安徽理工大学 经济与管理学院,安徽 淮南 232001 |
|
| High-precision real-time segmentation network for underground track areas |
Huaping ZHOU1( ),Bin DENG2,Kelei SUN1,Yongqi ZHANG3,4,Tao WU5,Jin WU5 |
1. School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China 2. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China 3. Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China 4. School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China 5. School of Economics and Management, Anhui University of Science and Technology, Huainan 232001, China |
引用本文:
周华平,邓彬,孙克雷,张咏琪,吴涛,吴劲. 井下轨道区域高精度实时分割网络[J]. 浙江大学学报(工学版), 2026, 60(2): 332-340.
Huaping ZHOU,Bin DENG,Kelei SUN,Yongqi ZHANG,Tao WU,Jin WU. High-precision real-time segmentation network for underground track areas. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 332-340.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.011
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I2/332
|
| 1 |
童佳乐. 基于改进实例分割的煤矿电机车障碍物检测技术研究 [D]. 淮南: 安徽理工大学, 2023: 1–102. TONG Jiale. Research on obstacle detection technology of coal mine electric locomotive based on improved instance segmentation [D]. Huainan: Anhui University of Science and Technology, 2023: 1–102.
|
| 2 |
杨豚, 郭永存, 王爽, 等 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报: 工学版, 2024, 58 (1): 29- 39 YANG Tun, GUO Yongcun, WANG Shuang, et al Obstacle recognition of unmanned rail electric locomotive in underground coal mine[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (1): 29- 39
|
| 3 |
卫星, 刘邵凡, 杨国强, 等 基于改进双边分割网络的井下轨道检测算法[J]. 计算机应用研究, 2020, 37 (Suppl.1): 348- 350 WEI Xing, LIU Shaofan, YANG Guoqiang, et al An underground track detection algorithm based on improved bilateral segmentation network[J]. Application Research of Computers, 2020, 37 (Suppl.1): 348- 350
|
| 4 |
周华平, 郑锐 基于改进BiSeNet的煤矿井下轨道检测算法[J]. 湖北民族大学学报: 自然科学版, 2021, 39 (4): 398- 403 ZHOU Huaping, ZHENG Rui Underground rail detection algorithm based on improved BiSeNet[J]. Journal of Hubei MinZu University: Natural Sciences Edition, 2021, 39 (4): 398- 403
doi: 10.13501/j.cnki.42-1908/n.2021.12.007
|
| 5 |
TONG J, WANG S, GUO Y, et al Obstacle detection method of underground electric locomotive rail based on instance segmentation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2024, 2678 (6): 708- 723
doi: 10.1177/03611981231198842
|
| 6 |
PIRASTEH S, VARSHOSAZ M, BADRLOO S, et al Developing an expansion-based obstacle detection using panoptic segmentation[J]. Journal of Field Robotics, 2024, 41 (5): 1245- 1264
|
| 7 |
YANG T, GUO Y, LI D, et al Vision-Based obstacle detection in dangerous region of coal mine driverless rail electric locomotives[J]. Measurement, 2025, 239: 115514
doi: 10.1016/j.measurement.2024.115514
|
| 8 |
马天, 石妍, 石炜璐, 等 基于非对称编解码结构的井下轨道异物分割方法[J]. 光电子·激光, 2026, 37 (1): 10- 20 MA Tian, SHI Yan, SHI Weilu, et al Foreign object segmentation method of underground track based on asymmetric codec structure[J]. Journal of Optoelectronics · Laser, 2026, 37 (1): 10- 20
doi: 10.16136/j.joel.2026.01.0453
|
| 9 |
POUDEL R P K, LIWICKI S, CIPOLLA R. Fast-SCNN: fast semantic segmentation network [EB/OL]. (2019–02–12)[2025–01–11]. https://arxiv.org/pdf/1902.04502.
|
| 10 |
LI H, XIONG P, FAN H, et al. DFANet: deep feature aggregation for real-time semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 9514–9523.
|
| 11 |
WATANABE S, HORI T, KARITA S, et al. ESPnet: end-to-end speech processing toolkit [C]// Proceedings of the Interspeech 2018. [S.l.]: ISCA, 2018: 2207–2211.
|
| 12 |
YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation [C]// Computer Vision – ECCV 2018. [S.l.]: Springer, 2018: 334–349.
|
| 13 |
FAN M, LAI S, HUANG J, et al. Rethinking BiSeNet for real-time semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9711–9720.
|
| 14 |
LEE J, KIM D, PONCE J, et al. SFNet: learning object-aware semantic correspondence [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 2273–2282.
|
| 15 |
PENG J, LIU Y, TANG S, et al. PP-LiteSeg: a superior real-time semantic segmentation model [EB/OL]. (2022–04–06)[2025–01–11]. https://arxiv.org/pdf/2204.02681.
|
| 16 |
WANG J, GOU C, WU Q, et al. RTFormer: efficient design for real-time semantic segmentation with transformer [EB/OL]. (2022–10–13)[ 2025–01–11]. https://arxiv.org/pdf/2210.07124.
|
| 17 |
WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection [EB/OL]. (2024–10–30)[2025–01–11]. https://arxiv.org/pdf/2405.14458.
|
| 18 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention. [S.l.]: Springer, 2015: 234–241.
|
| 19 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230–6239.
|
| 20 |
WANG J, SUN K, CHENG T, et al Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3349- 3364
doi: 10.1109/TPAMI.2020.2983686
|
| 21 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Computer Vision – ECCV 2018. [S.l.]: Springer, 2018: 833–851.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|