土木与建筑工程 |
|
|
|
|
海上风机单桩基础疲劳损伤计算方法 |
赵俭斌1( ),席义博1,王振宇2,*( ) |
1. 沈阳建筑大学 土木工程学院,辽宁 沈阳 110168 2. 浙江大学 建筑工程学院,浙江 杭州 310058 |
|
Fatigue damage calculation method of monopile supported offshore wind turbine |
Jian-bin ZHAO1( ),Yi-bo XI1,Zhen-yu WANG2,*( ) |
1. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China 2. College of Civil and architecture, Zhejiang University, Hangzhou 310058, China |
1 |
WANG X, ZENG X, LI J, et al A review on recent advancements of substructures for offshore wind turbines[J]. Energy Conversion and Management, 2018, 158: 103- 119
doi: 10.1016/j.enconman.2017.12.061
|
2 |
PASSON P Damage equivalent wind-wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines[J]. Renewable Energy, 2015, 81: 723- 736
doi: 10.1016/j.renene.2015.03.070
|
3 |
ZIEGLER L, VOORMEEREN S, SCHAFHIRT S, et al Design clustering of offshore wind turbines using probabilistic fatigue load estimation[J]. Renewable Energy, 2016, 91: 425- 433
doi: 10.1016/j.renene.2016.01.033
|
4 |
DO T Q, LINDT J W V D, MAHMOUD H Fatigue life fragilities and performance-based design of wind turbine tower base connections[J]. Journal of Structural Engineering, 2015, 141 (7): 04014183
doi: 10.1061/(ASCE)ST.1943-541X.0001150
|
5 |
JIA J An efficient nonlinear dynamic approach for calculating wave induced fatigue damage of offshore structures and its industrial applications for lifetime extension[J]. Applied Ocean Research, 2008, 30 (3): 189- 198
doi: 10.1016/j.apor.2008.09.003
|
6 |
KVITTEM M I, MOAN T Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine[J]. Marine Structures, 2015, 40: 38- 59
doi: 10.1016/j.marstruc.2014.10.009
|
7 |
DU J, LI H, ZHANG M, et al A novel hybrid frequency-time domain method for the fatigue damage assessment of offshore structures[J]. Ocean Engineering, 2015, 98: 57- 65
doi: 10.1016/j.oceaneng.2015.02.004
|
8 |
MOHAMMADI S F, GALGOUL N S, STAROSSEK U, et al An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure[J]. Marine Structures, 2016, 49: 97- 115
doi: 10.1016/j.marstruc.2016.05.003
|
9 |
TUNNA J M Fatigue life prediction for gaussian random loads at the design stage[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 9 (3): 169- 184
|
10 |
BENASCIUTTI D, TOVO R Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27 (8): 867- 877
doi: 10.1016/j.ijfatigue.2004.10.007
|
11 |
DIRLIK T. Application of computers in fatigue analysis [D]. Warwich: Warwich University, 1985: 129.
|
12 |
PARK J B, CHOUNG J, KIM K S A new fatigue prediction model for marine structures subject to wide band stress process[J]. Ocean Engineering, 2014, 76 (1): 144- 151
|
13 |
BENASCIUTTI D, TOVO R Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes[J]. Probabilistic Engineering Mechanics, 2006, 21 (4): 287- 299
doi: 10.1016/j.probengmech.2005.10.003
|
14 |
LOW Y M A method for accurate estimation of the fatigue damage induced by bimodal processes[J]. Probabilistic Engineering Mechanics, 2010, 25 (1): 75- 85
doi: 10.1016/j.probengmech.2009.08.001
|
15 |
JIAO G, MOAN T Probabilistic analysis of fatigue due to Gaussian load processes[J]. Probabilistic Engineering Mechanics, 1990, 5 (2): 76- 83
doi: 10.1016/0266-8920(90)90010-H
|
16 |
FU T T, CEBON D Predicting fatigue lives for bi-modal stress spectral densities[J]. International Journal of Fatigue, 2000, 22 (1): 11- 21
doi: 10.1016/S0142-1123(99)00113-9
|
17 |
GAO S, ZHENG X Y An improved spectral discretization method for fatigue damage assessment of bimodal Gaussian processes[J]. International Journal of Fatigue, 2019, 119: 268- 280
doi: 10.1016/j.ijfatigue.2018.09.027
|
18 |
DNV GL. Fatigue design of offshore steel structures: DNVGL-RP-C203[S]. Norway: DNV GL, 2016: 178.
|
19 |
HUANG W, MOAN T. Fatigue under combined high and low frequency loads [C]// 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg: OMAE, 2006: 149-156.
|
20 |
MA Y L, HAN C H, QU X Q Fatigue assessment method of marine structures subjected to two Gaussian random loads[J]. Ocean Engineering, 2018, 165: 107- 122
doi: 10.1016/j.oceaneng.2018.07.033
|
21 |
YAMASHITA A, SEKITA K. Analysis of the fatigue damage on the offshore wind turbines exposed to wind and wave loads within the typhoon area [C] // ASME 2004, International Conference on Offshore Mechanics and Arctic Engineering. Vancouver: ASME, 2004: 284-291.
|
22 |
DONG W, MOAN T, GAO Z Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain[J]. Engineering Structures, 2011, 33 (6): 2002- 2014
doi: 10.1016/j.engstruct.2011.02.037
|
23 |
YETER B, GARBATOV Y, SOARES C G Fatigue damage assessment of fixed offshore wind turbine tripod support structures[J]. Engineering Structures, 2015, 101: 518- 528
doi: 10.1016/j.engstruct.2015.07.038
|
24 |
TEMPEL J. Design of support structures for offshore wind turbines [D]. Delft: Delft University of Technology, 2006: 162.
|
25 |
ZIEGLER L, VOORMEEREN S, SCHAFHIRT S, et al Sensitivity of wave fatigue loads on offshore wind turbines under varying site conditions[J]. Energy Procedia, 2015, 80: 193- 200
doi: 10.1016/j.egypro.2015.11.422
|
26 |
MARINO E, GIUSTI A, MANUEL L Offshore wind turbine fatigue loads: the influence of alternative wave modeling for different turbulent and mean winds[J]. Renewable Energy, 2017, 102: 157- 169
doi: 10.1016/j.renene.2016.10.023
|
27 |
REZAEI R, FROMME P, DUFFOUR P Fatigue life sensitivity of monopile-supported offshore wind turbines to damping[J]. Renewable Energy, 2018, 123: 450- 459
doi: 10.1016/j.renene.2018.02.086
|
28 |
VALAMANESH V, MYERS A T Aerodynamic damping and seismic response of horizontal axis wind turbine towers[J]. Journal of Structural Engineering, 2014, 140 (11): 04014090
doi: 10.1061/(ASCE)ST.1943-541X.0001018
|
29 |
DAMGAARD M, ANDERSEN J K F, IBSEN L B, et al. Natural frequency and damping estimation of an offshore wind turbine structure [C] // Twenty-second International Offshore and Polar Engineering Conference. Rhodes: ISOPE, 2012: 300-307.
|
30 |
CARSWELL W, JOHANSSON J, L?VHOLT F, et al Foundation damping and the dynamics of offshore wind turbine monopiles[J]. Renewable Energy, 2015, 80: 724- 736
doi: 10.1016/j.renene.2015.02.058
|
31 |
DAMGAARD M, IBSEN L B, ANDERSEN L V, et al Cross-wind modal properties of offshore wind turbines identified by full scale testing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116 (5): 94- 108
|
32 |
IEC.Wind turbines-Part 1: Design requirements: IEC 61400-1 [S]. Switzerland: International Electrotechnical Commission, 2005:66.
|
33 |
HANSEN M O L. 风力机空气动力学[M]. 北京: 中国电力出版社, 2009: 39-46.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|