Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (9): 1711-1719    DOI: 10.3785/j.issn.1008-973X.2019.09.010
土木与建筑工程     
海上风机单桩基础疲劳损伤计算方法
赵俭斌1(),席义博1,王振宇2,*()
1. 沈阳建筑大学 土木工程学院,辽宁 沈阳 110168
2. 浙江大学 建筑工程学院,浙江 杭州 310058
Fatigue damage calculation method of monopile supported offshore wind turbine
Jian-bin ZHAO1(),Yi-bo XI1,Zhen-yu WANG2,*()
1. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2. College of Civil and architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1215 KB)   HTML
摘要:

为提高海上风机基础疲劳损伤计算的准确性,评价不同计算方法的适用性和影响,以海上风机单桩基础为例进行疲劳评价,建立全时域的动力分析模型和基于功率谱密度函数的频域疲劳损伤计算流程,研究气动阻尼比取值、风与波浪联合作用、应力幅概率分布模型对基础疲劳损伤的影响. 结果表明:基础疲劳损伤受气动阻尼比影响突出,风致疲劳损伤对气动阻尼比的敏感性大于浪致疲劳损伤;由于风与波浪联合作用对基础的疲劳损伤有较大影响,简单叠加风致疲劳损伤和浪致疲劳损伤得到的结果较风与波浪联合作用时偏小;确定合适的应力幅概率分布模型十分必要,频域法中采用Dirlik模型得到的风致疲劳损伤和采用快速傅里叶逆变换(IFFT)的浪致疲劳损伤分别与时域法的结果相近,但叠加的总疲劳损伤小于风与波浪联合作用时的总疲劳损伤.

关键词: 海上风机单桩基础疲劳损伤动力分析频域法气动阻尼比应力幅概率分布模型    
Abstract:

The applicability and influence of different calculation methods were evaluated, in order to improve the accuracy of the fatigue damage calculation of offshore wind turbine foundation. The fatigue evaluation of a monopile supported offshore wind turbine was studied. The full time domain dynamic analysis model and the frequency domain fatigue damage calculation process based on power spectral density function were established. The influence of aerodynamic damping, combined wind and wave loads and stress range probability distribution model on the fatigue damage were studied. Results show that the fatigue damage is easily affected by the aerodynamic damping, and the wind-induced fatigue damage is more sensitive to aerodynamic damping than the wave-induced fatigue damage. Since the combined wind and wave loads has great influence on the foundation fatigue damage, the result of simply superimposing wind-induced and wave-induced fatigue damage is less than the result of combined wind and wave loads. It is necessary to determine an appropriate stress range probability distribution model. The wind-induced and wave-induced fatigue damage calculated by Dirlik model and inverse fast Fourier transform (IFFT) in frequency domain method is respectively close to the results by time domain method, but the total fatigue damage of superimposing wind-induced and wave-induced fatigue damage is less than that of combining wind and wave loads by time domain method.

Key words: monopile supported offshore wind turbine    fatigue damage    dynamic analysis    frequency domain method    aerodynamic damping    stress range probability distribution model
收稿日期: 2018-09-27 出版日期: 2019-09-12
CLC:  TU 473.1  
通讯作者: 王振宇     E-mail: cejbzhao@163.com;wzyu@zju.edu.cn
作者简介: 赵俭斌(1960—),男,教授,从事风机基础研究. orcid.org/0000-0001-5808-4268. E-mail: cejbzhao@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵俭斌
席义博
王振宇

引用本文:

赵俭斌,席义博,王振宇. 海上风机单桩基础疲劳损伤计算方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1711-1719.

Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.010        http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1711

图 1  海上风机动力分析模型
图 2  频域法疲劳评价分析流程
风况 Δu/(m·s?2 u/(m·s?2 P/% 海况 Hs/m T/s P/%
W1 2.5~4.0 3 10.52 S1 0.5 2 5.93
W2 4.0~6.0 5 20.11 S2 0.5 3 36.59
W3 6.0~8.0 7 21.94 S3 1.0 3 16.05
W4 8.0~10.0 9 18.42 S4 0.5 4 8.05
W5 10.0~12.0 11 12.28 S5 1.0 4 19.79
W6 12.0~14.0 13 6.59 S6 1.5 4 6.76
W7 14.0~20.0 16 4.13 S7 1.5 5 2.45
W8 <2.5 ? 5.93 S8 2.0 5 3.18
W9 >20.0 ? 0.08 S9 2.5 5 1.20
表 1  风况与海况划分结果
图 3  风、浪联合作用工况的出现概率
图 4  时域法与频域法应力谱对比
图 5  气动阻尼比对风致疲劳损伤的影响(风况4)
图 6  气动阻尼比对浪致疲劳损伤的影响(海况9)
图 7  风况4与海况9联合作用时气动阻尼比对基础疲劳损伤的影响
风况 Dwind K/% 海况 Dwave K/%
注:Dtotal=Dwind+Dwave=4.70×10?1
W1 3.80×10?6 0 S1 2.09×10?5 0.25
W2 4.87×10?4 0.11 S2 1.33×10?4 1.56
W3 7.89×10?3 1.71 S3 1.87×10?3 22.00
W4 3.87×10?2 8.39 S4 1.20×10?5 0.14
W5 9.03×10?2 19.59 S5 9.44×10?4 11.11
W6 1.37×10?1 29.72 S6 2.45×10?3 28.82
W7 1.87×10?1 40.56 S7 2.38×10?4 2.80
W8 0 0 S8 1.30×10?3 15.29
W9 0 0 S9 1.53×10?3 18.00
Dwind 4.61×10?1 100.00 Dwave 8.50×10?3 100.00
表 2  风、浪单独作用下的基础疲劳损伤
图 8  风、浪联合作用时各工况基础疲劳损伤
图 9  海况2与各风况组合时的基础疲劳损伤
图 10  风况7与各海况组合时的基础疲劳损伤
计算方法 Dwind Dwave
时域方法 0.461 8.50×10?3
频域方法 IFFT方法 1.94 9.70×10?3
Dirlik模型 0.523 ?
BT模型 4.35 ?
Tunna模型 1.21 ?
Rayleigh模型 ? 0.461
表 3  不同计算方法下的基础疲劳损伤
1 WANG X, ZENG X, LI J, et al A review on recent advancements of substructures for offshore wind turbines[J]. Energy Conversion and Management, 2018, 158: 103- 119
doi: 10.1016/j.enconman.2017.12.061
2 PASSON P Damage equivalent wind-wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines[J]. Renewable Energy, 2015, 81: 723- 736
doi: 10.1016/j.renene.2015.03.070
3 ZIEGLER L, VOORMEEREN S, SCHAFHIRT S, et al Design clustering of offshore wind turbines using probabilistic fatigue load estimation[J]. Renewable Energy, 2016, 91: 425- 433
doi: 10.1016/j.renene.2016.01.033
4 DO T Q, LINDT J W V D, MAHMOUD H Fatigue life fragilities and performance-based design of wind turbine tower base connections[J]. Journal of Structural Engineering, 2015, 141 (7): 04014183
doi: 10.1061/(ASCE)ST.1943-541X.0001150
5 JIA J An efficient nonlinear dynamic approach for calculating wave induced fatigue damage of offshore structures and its industrial applications for lifetime extension[J]. Applied Ocean Research, 2008, 30 (3): 189- 198
doi: 10.1016/j.apor.2008.09.003
6 KVITTEM M I, MOAN T Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine[J]. Marine Structures, 2015, 40: 38- 59
doi: 10.1016/j.marstruc.2014.10.009
7 DU J, LI H, ZHANG M, et al A novel hybrid frequency-time domain method for the fatigue damage assessment of offshore structures[J]. Ocean Engineering, 2015, 98: 57- 65
doi: 10.1016/j.oceaneng.2015.02.004
8 MOHAMMADI S F, GALGOUL N S, STAROSSEK U, et al An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure[J]. Marine Structures, 2016, 49: 97- 115
doi: 10.1016/j.marstruc.2016.05.003
9 TUNNA J M Fatigue life prediction for gaussian random loads at the design stage[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 9 (3): 169- 184
10 BENASCIUTTI D, TOVO R Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27 (8): 867- 877
doi: 10.1016/j.ijfatigue.2004.10.007
11 DIRLIK T. Application of computers in fatigue analysis [D]. Warwich: Warwich University, 1985: 129.
12 PARK J B, CHOUNG J, KIM K S A new fatigue prediction model for marine structures subject to wide band stress process[J]. Ocean Engineering, 2014, 76 (1): 144- 151
13 BENASCIUTTI D, TOVO R Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes[J]. Probabilistic Engineering Mechanics, 2006, 21 (4): 287- 299
doi: 10.1016/j.probengmech.2005.10.003
14 LOW Y M A method for accurate estimation of the fatigue damage induced by bimodal processes[J]. Probabilistic Engineering Mechanics, 2010, 25 (1): 75- 85
doi: 10.1016/j.probengmech.2009.08.001
15 JIAO G, MOAN T Probabilistic analysis of fatigue due to Gaussian load processes[J]. Probabilistic Engineering Mechanics, 1990, 5 (2): 76- 83
doi: 10.1016/0266-8920(90)90010-H
16 FU T T, CEBON D Predicting fatigue lives for bi-modal stress spectral densities[J]. International Journal of Fatigue, 2000, 22 (1): 11- 21
doi: 10.1016/S0142-1123(99)00113-9
17 GAO S, ZHENG X Y An improved spectral discretization method for fatigue damage assessment of bimodal Gaussian processes[J]. International Journal of Fatigue, 2019, 119: 268- 280
doi: 10.1016/j.ijfatigue.2018.09.027
18 DNV GL. Fatigue design of offshore steel structures: DNVGL-RP-C203[S]. Norway: DNV GL, 2016: 178.
19 HUANG W, MOAN T. Fatigue under combined high and low frequency loads [C]// 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg: OMAE, 2006: 149-156.
20 MA Y L, HAN C H, QU X Q Fatigue assessment method of marine structures subjected to two Gaussian random loads[J]. Ocean Engineering, 2018, 165: 107- 122
doi: 10.1016/j.oceaneng.2018.07.033
21 YAMASHITA A, SEKITA K. Analysis of the fatigue damage on the offshore wind turbines exposed to wind and wave loads within the typhoon area [C] // ASME 2004, International Conference on Offshore Mechanics and Arctic Engineering. Vancouver: ASME, 2004: 284-291.
22 DONG W, MOAN T, GAO Z Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain[J]. Engineering Structures, 2011, 33 (6): 2002- 2014
doi: 10.1016/j.engstruct.2011.02.037
23 YETER B, GARBATOV Y, SOARES C G Fatigue damage assessment of fixed offshore wind turbine tripod support structures[J]. Engineering Structures, 2015, 101: 518- 528
doi: 10.1016/j.engstruct.2015.07.038
24 TEMPEL J. Design of support structures for offshore wind turbines [D]. Delft: Delft University of Technology, 2006: 162.
25 ZIEGLER L, VOORMEEREN S, SCHAFHIRT S, et al Sensitivity of wave fatigue loads on offshore wind turbines under varying site conditions[J]. Energy Procedia, 2015, 80: 193- 200
doi: 10.1016/j.egypro.2015.11.422
26 MARINO E, GIUSTI A, MANUEL L Offshore wind turbine fatigue loads: the influence of alternative wave modeling for different turbulent and mean winds[J]. Renewable Energy, 2017, 102: 157- 169
doi: 10.1016/j.renene.2016.10.023
27 REZAEI R, FROMME P, DUFFOUR P Fatigue life sensitivity of monopile-supported offshore wind turbines to damping[J]. Renewable Energy, 2018, 123: 450- 459
doi: 10.1016/j.renene.2018.02.086
28 VALAMANESH V, MYERS A T Aerodynamic damping and seismic response of horizontal axis wind turbine towers[J]. Journal of Structural Engineering, 2014, 140 (11): 04014090
doi: 10.1061/(ASCE)ST.1943-541X.0001018
29 DAMGAARD M, ANDERSEN J K F, IBSEN L B, et al. Natural frequency and damping estimation of an offshore wind turbine structure [C] // Twenty-second International Offshore and Polar Engineering Conference. Rhodes: ISOPE, 2012: 300-307.
30 CARSWELL W, JOHANSSON J, L?VHOLT F, et al Foundation damping and the dynamics of offshore wind turbine monopiles[J]. Renewable Energy, 2015, 80: 724- 736
doi: 10.1016/j.renene.2015.02.058
31 DAMGAARD M, IBSEN L B, ANDERSEN L V, et al Cross-wind modal properties of offshore wind turbines identified by full scale testing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116 (5): 94- 108
32 IEC.Wind turbines-Part 1: Design requirements: IEC 61400-1 [S]. Switzerland: International Electrotechnical Commission, 2005:66.
33 HANSEN M O L. 风力机空气动力学[M]. 北京: 中国电力出版社, 2009: 39-46.
[1] 诸葛翰卿,谢旭,廖燕华,唐站站. 横桥向地震作用对钢拱桥地震损伤发展的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 702-712.
[2] 张军, 金伟良, 毛江鸿. 基于压磁效应的钢筋疲劳损伤试验研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1681-1687.
[3] 金伟良, 周峥栋, 张军, 毛江鸿, 崔磊, 潘崇根. 基于动态压磁的锈蚀钢筋疲劳特性的试验研究[J]. 浙江大学学报(工学版), 2017, 51(2): 225-230.
[4] 楼文娟, 罗罡, 杨晓辉, 卢明. 典型覆冰导线脉动气动力特性及风偏响应[J]. 浙江大学学报(工学版), 2017, 51(10): 1988-1995.
[5] 刘扬,张海萍,邓扬,李明. 考虑车辆超载的公路简支梁桥疲劳性能[J]. 浙江大学学报(工学版), 2015, 49(11): 2172-2178.
[6] 童根树,叶赟, 张磊. 3种理想化滞回模型下的弹塑性反应谱对比[J]. 浙江大学学报(工学版), 2014, 48(4): 693-703.
[7] 沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.
[8] 孙晓燕, 徐冲 , 王海龙 , 褚霁芳. CFRP加固前后桥梁构件超载疲劳试验研究[J]. J4, 2012, 46(9): 1585-1591.
[9] 沈国辉, 王宁博, 孙炳楠,楼文娟. 基于风洞试验的高层建筑风致响应和
等效风荷载计算
[J]. J4, 2012, 46(3): 448-453.
[10] 王杭州, 秦华伟, 杨灿军, 等. 深海热液采样阀PEEK阀芯疲劳寿命研究[J]. J4, 2010, 44(1): 14-18.
[11] 王直民 张土乔 吴小刚. 不平整路面上的车辆等效动载系数[J]. J4, 2007, 41(6): 1007-1011.
[12] 李鸿波 张我华 王亚军. 爆炸载荷下拱坝脆性动力损伤有限元分析[J]. J4, 2007, 41(1): 29-33.
[13] 张土乔 邵煜. 交通荷载作用下饱和土中管道的动力分析[J]. J4, 2007, 41(1): 48-51.
[14] 刘国华 王振宇. 爆破荷载作用下隧道的动态响应与抗爆分析[J]. J4, 2004, 38(2): 204-209.