Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 332-340    DOI: 10.3785/j.issn.1008-973X.2026.02.011
计算机技术与控制工程     
井下轨道区域高精度实时分割网络
周华平1(),邓彬2,孙克雷1,张咏琪3,4,吴涛5,吴劲5
1. 安徽理工大学 计算机科学与工程学院,安徽 淮南 232001
2. 安徽理工大学 电气与信息工程学院,安徽 淮南 232001
3. 安徽理工大学 工业粉尘防控与职业安全健康教育部重点实验室,安徽 淮南 232001
4. 安徽理工大学 安全科学与工程学院,安徽 淮南 232001
5. 安徽理工大学 经济与管理学院,安徽 淮南 232001
High-precision real-time segmentation network for underground track areas
Huaping ZHOU1(),Bin DENG2,Kelei SUN1,Yongqi ZHANG3,4,Tao WU5,Jin WU5
1. School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
2. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China
3. Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
4. School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
5. School of Economics and Management, Anhui University of Science and Technology, Huainan 232001, China
 全文: PDF(3465 KB)   HTML
摘要:

针对现有实时分割方法在低光照环境下对煤矿井下轨道区域边缘分割效果差、分割精度低的问题,提出高精度实时分割网络(HPRTSNet). 在浅层特征提取部分,设计基于Sobel算子的多尺度边缘增强模块(SMEEM),通过Sobel算子和多尺度自适应平均池化捕获轨道边缘特征,提升轨道区域的边缘表达能力. 在深层特征提取部分,提出双域融合增强模块(DFEM)融合时频域信息,有效增强对井下复杂背景的理解;构建感受野混合空洞空间金字塔池化(RHASPP)模块,扩大感受野并改善轨道特征表达. 为了优化模型性能,提出混合分割损失函数. 在自建的矿井轨道分割数据集上的实验结果表明,与现有的实时分割算法相比,HPRTSNet在分割精度与实时性方面的性能更优.

关键词: 实时分割矿井轨道无人驾驶电机车时域频域    
Abstract:

To address the problems of poor edge segmentation performance and low segmentation accuracy of existing real-time segmentation methods for underground coal mine rail regions under low-light conditions, a high-precision real-time segmentation network (HPRTSNet) was proposed. In the shallow feature extraction stage, a Sobel-based multi-scale edge enhancement module (SMEEM) was designed, in which Sobel operators and multi-scale adaptive average pooling were employed to capture rail edge features, thereby enhancing edge representation of rail regions. In the deep feature extraction stage, a dual-domain fusion enhancement module (DFEM) was introduced to fuse spatial and frequency-domain information, effectively improving the understanding of the complex underground backgrounds. In addition, a receptive-field hybrid atrous spatial pyramid pooling (RHASPP) module was constructed to expand the receptive field and enhance rail feature representation. To further optimize model performance, a hybrid segmentation loss function was adopted. Experimental results on a self-built mine-track segmentation dataset demonstrated that, compared with existing real-time segmentation algorithms, HPRTSNet achieved superior performance in both segmentation accuracy and real-time efficiency.

Key words: real-time segmentation    mine track    unmanned electric locomotive    time domain    frequency domain
收稿日期: 2025-01-22 出版日期: 2026-02-03
CLC:  TP 391  
基金资助: 安徽高校自然科学研究项目(2024AH040065).
作者简介: 周华平(1979—),女,教授,从事计算机视觉研究. orcid.org/0000-0002-4419-0825. E-mail:hpzhou@aust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周华平
邓彬
孙克雷
张咏琪
吴涛
吴劲

引用本文:

周华平,邓彬,孙克雷,张咏琪,吴涛,吴劲. 井下轨道区域高精度实时分割网络[J]. 浙江大学学报(工学版), 2026, 60(2): 332-340.

Huaping ZHOU,Bin DENG,Kelei SUN,Yongqi ZHANG,Tao WU,Jin WU. High-precision real-time segmentation network for underground track areas. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 332-340.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.011        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/332

图 1  井下轨道区域高精度实时分割网络总体架构图
图 2  感受野混合空洞空间金字塔池化网络结构示意图
图 3  感受野混合空洞空间金字塔池化的感受野大小示意图
图 4  矿井轨道分割数据集的数据分布统计图
图 5  矿井轨道分割数据集的图像与标签
基线模型SMEEMDFEMRHASPP
模块
混合分割
损失函数
mIoU/%
DeeplabV3+
(MobileNetV2)
89.07
90.22
90.92
90.56
89.66
91.79
91.55
91.13
92.04
92.44
表 1  矿井轨道分割数据集上的模块消融实验
图 6  添加混合分割损失函数前后的模型分割损失对比
模型骨干名称np/106mIoU/%FPS(帧·s?1
Fast-SCNN[9]1.4481.7521.7
DFANet[10]7.8084.5023.2
ESPNet[11]ESP2.7580.5129.6
BiSeNetv1[12]ResNet184.9086.2131.3
STDC[13]STDC18.2988.1819.2
SFNet[14]ResNet1813.8187.3315.2
PP-LiteSeg-B[15]STDC212.2590.3417.1
RTFormer-Base[16]16.8791.7117.3
YOLOv10n[17]CSPNet5.7086.6044.4
U-Net[18]Vgg24.8978.89
PSPNet[19]ResNet5046.7183.46
HRNet[20]HRNet_W3229.5489.29
DeeplabV3+[21]Xception54.7193.95
SegFormer-B2[22]MiT-B227.3584.20
HPRTSNetMobileNetV29.8892.4423.5
表 2  不同模型在矿井轨道分割数据集上的性能参数对比
图 7  不同模型在矿井轨道分割数据集上的分割效果对比
1 童佳乐. 基于改进实例分割的煤矿电机车障碍物检测技术研究 [D]. 淮南: 安徽理工大学, 2023: 1–102.
TONG Jiale. Research on obstacle detection technology of coal mine electric locomotive based on improved instance segmentation [D]. Huainan: Anhui University of Science and Technology, 2023: 1–102.
2 杨豚, 郭永存, 王爽, 等 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报: 工学版, 2024, 58 (1): 29- 39
YANG Tun, GUO Yongcun, WANG Shuang, et al Obstacle recognition of unmanned rail electric locomotive in underground coal mine[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (1): 29- 39
3 卫星, 刘邵凡, 杨国强, 等 基于改进双边分割网络的井下轨道检测算法[J]. 计算机应用研究, 2020, 37 (Suppl.1): 348- 350
WEI Xing, LIU Shaofan, YANG Guoqiang, et al An underground track detection algorithm based on improved bilateral segmentation network[J]. Application Research of Computers, 2020, 37 (Suppl.1): 348- 350
4 周华平, 郑锐 基于改进BiSeNet的煤矿井下轨道检测算法[J]. 湖北民族大学学报: 自然科学版, 2021, 39 (4): 398- 403
ZHOU Huaping, ZHENG Rui Underground rail detection algorithm based on improved BiSeNet[J]. Journal of Hubei MinZu University: Natural Sciences Edition, 2021, 39 (4): 398- 403
doi: 10.13501/j.cnki.42-1908/n.2021.12.007
5 TONG J, WANG S, GUO Y, et al Obstacle detection method of underground electric locomotive rail based on instance segmentation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2024, 2678 (6): 708- 723
doi: 10.1177/03611981231198842
6 PIRASTEH S, VARSHOSAZ M, BADRLOO S, et al Developing an expansion-based obstacle detection using panoptic segmentation[J]. Journal of Field Robotics, 2024, 41 (5): 1245- 1264
7 YANG T, GUO Y, LI D, et al Vision-Based obstacle detection in dangerous region of coal mine driverless rail electric locomotives[J]. Measurement, 2025, 239: 115514
doi: 10.1016/j.measurement.2024.115514
8 马天, 石妍, 石炜璐, 等 基于非对称编解码结构的井下轨道异物分割方法[J]. 光电子·激光, 2026, 37 (1): 10- 20
MA Tian, SHI Yan, SHI Weilu, et al Foreign object segmentation method of underground track based on asymmetric codec structure[J]. Journal of Optoelectronics · Laser, 2026, 37 (1): 10- 20
doi: 10.16136/j.joel.2026.01.0453
9 POUDEL R P K, LIWICKI S, CIPOLLA R. Fast-SCNN: fast semantic segmentation network [EB/OL]. (2019–02–12)[2025–01–11]. https://arxiv.org/pdf/1902.04502.
10 LI H, XIONG P, FAN H, et al. DFANet: deep feature aggregation for real-time semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 9514–9523.
11 WATANABE S, HORI T, KARITA S, et al. ESPnet: end-to-end speech processing toolkit [C]// Proceedings of the Interspeech 2018. [S.l.]: ISCA, 2018: 2207–2211.
12 YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation [C]// Computer Vision – ECCV 2018. [S.l.]: Springer, 2018: 334–349.
13 FAN M, LAI S, HUANG J, et al. Rethinking BiSeNet for real-time semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9711–9720.
14 LEE J, KIM D, PONCE J, et al. SFNet: learning object-aware semantic correspondence [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 2273–2282.
15 PENG J, LIU Y, TANG S, et al. PP-LiteSeg: a superior real-time semantic segmentation model [EB/OL]. (2022–04–06)[2025–01–11]. https://arxiv.org/pdf/2204.02681.
16 WANG J, GOU C, WU Q, et al. RTFormer: efficient design for real-time semantic segmentation with transformer [EB/OL]. (2022–10–13)[ 2025–01–11]. https://arxiv.org/pdf/2210.07124.
17 WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection [EB/OL]. (2024–10–30)[2025–01–11]. https://arxiv.org/pdf/2405.14458.
18 RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention. [S.l.]: Springer, 2015: 234–241.
19 ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230–6239.
20 WANG J, SUN K, CHENG T, et al Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3349- 3364
doi: 10.1109/TPAMI.2020.2983686
21 CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Computer Vision – ECCV 2018. [S.l.]: Springer, 2018: 833–851.
[1] 袁沛,蒋君侠,马飞,金杰峰,来建良. 基于PCA和自联想神经网络的核环境冷挤压切割刀具状态监测[J]. 浙江大学学报(工学版), 2025, 59(3): 606-615.
[2] 杨钢,潘越,王照卓,徐越,李宝仁. 电液伺服系统线性自抗扰控制参数频域整定方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2034-2044.
[3] 杨豚,郭永存,王爽,马鑫. 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报(工学版), 2024, 58(1): 29-39.
[4] 林俊光,周雅敏,冯彦皓,马聪,吴凡,郑梦莲,俞自涛. 基于热湿负荷与自适应预测时域微网优化调度[J]. 浙江大学学报(工学版), 2023, 57(9): 1832-1842.
[5] 李洋,齐蓉,代明光. 补偿因子可调逆变器电压外环线性自抗扰控制[J]. 浙江大学学报(工学版), 2021, 55(7): 1279-1288.
[6] 王昶,张永生,王旭,于英. 基于深度学习的遥感影像变化检测方法[J]. 浙江大学学报(工学版), 2020, 54(11): 2138-2148.
[7] 吴浩宇,赵永生,何炎平,毛文刚,阳杰,谷孝利,黄超. 张力腿浮式风机筋腱失效模式下瞬态响应分析[J]. 浙江大学学报(工学版), 2020, 54(11): 2196-2203.
[8] 赵俭斌,席义博,王振宇. 海上风机单桩基础疲劳损伤计算方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1711-1719.
[9] 李莹, 严国锋, 王煜, 黄宇新, 杜健祥, 谢丽娟, 何赛灵. 太赫兹技术在烟叶香型分类中的应用[J]. 浙江大学学报(工学版), 2018, 52(3): 537-542.
[10] 秦培江, 马永亮, 韩超帅, 曲先强. 海上风机支撑结构的频域疲劳评估方法研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1712-1719.
[11] 楼文娟, 罗罡, 杨晓辉, 卢明. 典型覆冰导线脉动气动力特性及风偏响应[J]. 浙江大学学报(工学版), 2017, 51(10): 1988-1995.
[12] 许慧, 徐秀琴, 莫炯炯, 王志宇, 尚永衡, 王立平, 郁发新. 基于耦合模理论的强阻带抑制带通滤波器设计[J]. 浙江大学学报(工学版), 2017, 51(1): 177-183.
[13] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[14] 柯世堂,朱鹏. 基于大涡模拟增设气动措施冷却塔风荷载频域特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2143-2149.
[15] 王奎华,李振亚,吕述晖,张鹏,庾焱秋. 静钻根植竹节桩纵向振动特性及应用研究[J]. 浙江大学学报(工学版), 2015, 49(3): 522-530.