机械工程、能源工程 |
|
|
|
|
基于热湿负荷与自适应预测时域微网优化调度 |
林俊光1,2( ),周雅敏2,冯彦皓2,马聪1,吴凡1,2( ),郑梦莲2,*( ),俞自涛2 |
1. 浙江浙能技术研究院有限公司,浙江 杭州 311100 2. 浙江大学 热工与动力系统研究所,浙江 杭州 310027 |
|
Optimal scheduling of microgrid based on heat and humidity load with adaptive prediction horizon length |
Jun-guang LIN1,2( ),Ya-min ZHOU2,Yan-hao FENG2,Cong MA1,Fan WU1,2( ),Meng-lian ZHENG2,*( ),Zi-tao YU2 |
1. Zhejiang Energy Group Research Institute Limited Company, Hangzhou 311100, China 2. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China |
引用本文:
林俊光,周雅敏,冯彦皓,马聪,吴凡,郑梦莲,俞自涛. 基于热湿负荷与自适应预测时域微网优化调度[J]. 浙江大学学报(工学版), 2023, 57(9): 1832-1842.
Jun-guang LIN,Ya-min ZHOU,Yan-hao FENG,Cong MA,Fan WU,Meng-lian ZHENG,Zi-tao YU. Optimal scheduling of microgrid based on heat and humidity load with adaptive prediction horizon length. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1832-1842.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.015
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1832
|
1 |
清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2022 (公共建筑专题) [M]. 北京: 中国建筑工业出版社, 2022: 7.
|
2 |
骆钊, 刘德文, 沈鑫, 等 综合能源系统优化运行技术研究综述[J]. 电力建设, 2022, 43 (12): 3- 14 LUO Zhao, LIU De-wen, SHEN Xin, et al Review of research on optimal operation technology of intergrated energy system[J]. Electric Power Construction, 2022, 43 (12): 3- 14
|
3 |
刘艳峰, 刘正学, 罗西, 等 基于柔性负荷的孤立多能互补建筑能源系统优化设计[J]. 太阳能学报, 2022, 43 (6): 24- 32 LIU Yan-feng, LIU Zheng-xue, LUO Xi, et al Design of isolated multi-energy complementary building energy system based on flexible load[J]. Acta Energiae Solaris Sinica, 2022, 43 (6): 24- 32
|
4 |
靳小龙, 穆云飞, 贾宏杰, 等 融合需求侧虚拟储能系统的冷热电联供楼宇微网优化调度方法[J]. 中国电机工程学报, 2017, 37 (2): 581- 591 JIN Xiao-long, MU Yun-fei, JIA Hong-jie, et al Optimal scheduling method for a combined cooling, heating and power building microgrid considering virtual storage system at demand side[J]. Proceedings of the CSEE, 2017, 37 (2): 581- 591
|
5 |
蔡志宏, 吴杰康, 王瑞东, 等 考虑空调群虚拟储能的配电网电压无功协同控制研究[J]. 电力需求侧管理, 2021, 23 (6): 63- 68 CAI Zhi-hong, WU Jie-kang, WANG Rui-dong, et al Coordinated control research for voltage and reactive power of distribution network considering virtual energy storage of air-conditionings[J]. Power Demand Side Management, 2021, 23 (6): 63- 68
|
6 |
葛少云, 刘静仪, 刘洪, 等 需求响应机制下含建筑虚拟储能的能源站经济调度[J]. 电力系统自动化, 2020, 44 (4): 35- 43 GE Shao-yun, LIU Jing-yi, LIU Hong, et al Economic dispatch of energy station with building virtual energy storage in demand response mechanism[J]. Automation of Electric Power Systems, 2020, 44 (4): 35- 43
|
7 |
陈厚合, 李泽宁, 靳小龙, 等 集成智能楼宇的主动配电网建模及优化方法[J]. 中国电机工程学报, 2018, 38 (22): 6550- 6563 CHEN Hou-he, LI Ze-ning, JIN Xiao-long, et al Modeling and optimization of active distribution network with integrated smart buildings[J]. Proceedings of the CSEE, 2018, 38 (22): 6550- 6563
|
8 |
YUAN J, XIAO Z, CHEN X, et al A temperature and humidity setback demand response strategy for HVAC systems[J]. Sustainable Cities and Society, 2021, 75: 103393
doi: 10.1016/j.scs.2021.103393
|
9 |
曹昉, 郭培林, 孙畅 基于能耗模拟的精密空调温湿度协同优化控制[J]. 现代电力, 2017, 34 (5): 22- 29 CAO Fang, GUO Pei-lin, SUN Chang Cooperative optimal control on temperature and humidity of precision air conditioning based on energy consumption simulation[J]. Modern Electric Power, 2017, 34 (5): 22- 29
|
10 |
MORARI M, LEE J H Model predictive control: past, present and future[J]. Computers and Chemical Engineering, 1999, 23 (4/5): 667- 682
|
11 |
FOROUGH A B, ROSHANDEL R Lifetime optimization framework for a hybrid renewable energy system based on receding horizon optimization[J]. Energy, 2018, 150: 617- 630
doi: 10.1016/j.energy.2018.02.158
|
12 |
吴鸣, 骆钊, 季宇, 等 基于模型预测控制的冷热电联供型微网动态优化调度[J]. 中国电机工程学报, 2017, 37 (24): 7174- 7184 WU Ming, LUO Zhao, JI Yu, et al Optimal dynamic dispatch for combined cooling heating and power microgrid based on model predictive control[J]. Proceedings of the CSEE, 2017, 37 (24): 7174- 7184
|
13 |
张风晓, 靳小龙, 穆云飞, 等 融合虚拟储能系统的楼宇微网模型预测调控方法[J]. 中国电机工程学报, 2018, 38 (15): 4420- 4428 ZHANG Feng-xiao, JIN Xiao-long, MU Yun-fei, et al Model predictive scheduling method for a building microgrid considering virtual storage system[J]. Proceedings of the CSEE, 2018, 38 (15): 4420- 4428
doi: 10.13334/j.0258-8013.pcsee.171707
|
14 |
朱飞宇, 徐志宇, 许维胜, 等 计及多类型需求响应的风-火-荷两阶段协同调度[J]. 电工电能新技术, 2020, 39 (1): 12- 21 ZHU Fei-yu, XU Zhi-yu, XU Wei-sheng, et al A two-stage coordinated dispatch of wind power, thermal power and system load with multi-type demand response[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39 (1): 12- 21
|
15 |
张弛, 曾杰, 张威, 等 含混合储能的独立微电网多时间尺度协调控制策略[J]. 现代电力, 2020, 37 (1): 74- 82 ZHANG Chi, ZENG Jie, ZHANG Wei, et al Multi-time scale coordination control strategy of isolated microgrid with hybrid energy storage[J]. Modern Electric Power, 2020, 37 (1): 74- 82
|
16 |
孙惠娟, 张乐乐, 彭春华 基于差异化需求响应模型预测控制的微网时域滚动优化调度[J]. 电网技术, 2021, 45 (8): 3096- 3105 SUN Hui-juan, ZHANG Le-le, PENG Chun-hua Time-domain rolling optimal scheduling of microgrid based on differential demand response model predictive control[J]. Power System Technology, 2021, 45 (8): 3096- 3105
doi: 10.13335/j.1000-3673.pst.2020.1507
|
17 |
LUO Z, WU Z, LI Z, et al A two-stage optimization and control for CCHP microgrid energy management[J]. Applied Thermal Engineering, 2017, 125: 513- 522
doi: 10.1016/j.applthermaleng.2017.05.188
|
18 |
JIN X L, WU J, MU Y, et al Hierarchical microgrid energy management in an office building[J]. Applied Energy, 2017, 208: 480- 494
doi: 10.1016/j.apenergy.2017.10.002
|
19 |
刘立阳, 吴军基, 孟绍良 基于预测控制的含风电滚动优化调度[J]. 电工技术学报, 2017, 32 (17): 75- 83 LIU Li-yang, WU Jun-ji, MENG Shao-liang A rolling dispatch model for wind power integrated power system based on predictive control[J]. Transactions of China Electrotechnical Society, 2017, 32 (17): 75- 83
doi: 10.19595/j.cnki.1000-6753.tces.161373
|
20 |
MA J R, QIN J, SALSBURY T, et al Demand reduction in building energy systems based on economic model predictive control[J]. Chemical Engineering Science, 2012, 67 (1): 92- 100
doi: 10.1016/j.ces.2011.07.052
|
21 |
中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范: GB 50736‒2012 [S]. 北京: 中国建筑工业出版社, 2012: 6.
|
22 |
赵荣义, 范存养, 薛殿华, 等. 空气调节(第四版) [M]. 北京: 中国建筑工业出版社, 2009: 7.
|
23 |
ZHAO H, MAGOULÈS F A review on the prediction of building energy consumption[J]. Renewable and Sustainable Energy Reviews, 2012, 16 (6): 3586- 3592
doi: 10.1016/j.rser.2012.02.049
|
24 |
邓剑波, 马瑞, 胡振文, 等 基于改进粒子群算法的冷热电联供微网优化调度[J]. 电力科学与技术学报, 2018, 33 (2): 35- 42 DENG Jian-bo, MA Rui, HU Zhen-wen, et al Optimal scheduling of micro grid with CCHP systems based on improved particle swarm optimization algorithm[J]. Journal of Electric Power Science and Technology, 2018, 33 (2): 35- 42
|
25 |
邓佳乐, 胡林献, 邵世圻, 等 电热联合系统多时间尺度滚动调度策略[J]. 电网技术, 2016, 40 (12): 3796- 3803 DENG Jia-le, HU Lin-xian, SHAO Shi-qi, et al Multi-time scale rolling scheduling method for combined heat and power system[J]. Power System Technology, 2016, 40 (12): 3796- 3803
|
26 |
周晓君, 阳春华, 桂卫华, 等 带可变随机函数和变异算子的粒子群优化算法(英文)[J]. 自动化学报, 2014, 40 (7): 1339- 1347 ZHOU Xiao-jun, YANG Chun-hua, GUI Wei-hua, et al A particle swarm optimization algorithm with variable random functions and mutation[J]. Acta Automatica Sinica, 2014, 40 (7): 1339- 1347
doi: 10.1016/S1874-1029(14)60015-X
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|