Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 635-642    DOI: 10.3785/j.issn.1008-973X.2025.03.021
机械工程     
丘陵山地果园植保无人机三维路径规划
于少猛1,2(),闫铭1,王鹏飞1,2,*(),朱建锡3,杨欣1
1. 河北农业大学 机电工程学院,河北 保定 071001
2. 河北省智慧农业装备技术创新中心,河北 保定 071001
3. 浙江省农业机械研究院,浙江 金华 321000
3D path planning of plant protection UAVs in hilly mountainous orchards
Shaomeng YU1,2(),Ming YAN1,Pengfei WANG1,2,*(),Jianxi ZHU3,Xin YANG1
1. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, China
2. Technology Innovation Center of Intelligent Agricultural Equipment, Baoding 071001, China
3. Zhejiang Agricultural Machinery Research Institute, Jinhua 321000, China
 全文: PDF(2985 KB)   HTML
摘要:

丘陵地区果园植保无人机作业时人工操控难度大,自动作业缺少三维路径规划,为此提出山地果园植保无人机全覆盖三维作业路径规划方法. 利用实景三维模型获取作业区域三维坐标,基于往复牛耕法和丘陵果园实景三维模型,进行植保无人机全覆盖三维路径规划. 考虑植保无人机运动状况及自身载重变化,构建植保无人机能量消耗模型,进而对作业航向角(1°~180°)进行寻优,获得最小能耗的作业路径. 田间试验表明,最小能耗的作业路径(航向角为91°)相比于最大能耗的作业路径(航向角为147°)降低了完成植保作业所需总能耗(能耗降低率为20.88%),缩短了完成植保作业所需时间(时间降低率为16.31%),且作业区域内各采样点的冠层雾滴沉积量波动较小,在优化能耗、提高作业效率的同时实现了对作业区域的全覆盖植保作业.

关键词: 植保无人机路径规划山地果园作业航向角能耗    
Abstract:

A full-coverage 3D path planning method for mountainous orchard plant protection UAVs was proposed to address the challenges of manual control and the lack of 3D path planning for plant protection drones operating in hilly orchards. 3D coordinates of the operation area obtained from a real scene 3D model of the area were utilized. Comprehensive 3D path planning for plant protection UAVs was carried out based on the reciprocating cattle farming method and the real scene 3D model of the hilly orchard. An energy consumption model for the UAV was constructed, considering its movement status and load changes. The operating heading angle (ranging from 1° to 180°) was optimized to determine the path with minimal energy consumption. Results of field experiments showed that the path with the minimal energy consumption (heading angle of 91°) reduced the total energy consumption by 20.88% and the time required to complete the plant protection operation by 16.31%, compared to the path with the maximum energy consumption (heading angle of 147°). The fluctuation in canopy droplet deposition at each sampling point within the operation area was minimal. This method not only optimizes the energy consumption and improves the operational efficiency, but also ensures full coverage of plant protection within the working area.

Key words: plant protection unmanned aerial vehicle    path planning    mountainous orchard    operational heading angle    energy consumption
收稿日期: 2024-01-01 出版日期: 2025-03-10
CLC:  S 225.3  
基金资助: 国家现代农业产业技术体系资助项目(CARS-27);金华市科技计划资助项目(2021-2-016).
通讯作者: 王鹏飞     E-mail: ysmaabb@163.com;wpf5769@126.com
作者简介: 于少猛(1998—),男,硕士生,从事丘陵山地果园生产装备自动化研究. orcid.org/0009-0004-2579-051X. E-mail:ysmaabb@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
于少猛
闫铭
王鹏飞
朱建锡
杨欣

引用本文:

于少猛,闫铭,王鹏飞,朱建锡,杨欣. 丘陵山地果园植保无人机三维路径规划[J]. 浙江大学学报(工学版), 2025, 59(3): 635-642.

Shaomeng YU,Ming YAN,Pengfei WANG,Jianxi ZHU,Xin YANG. 3D path planning of plant protection UAVs in hilly mountainous orchards. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 635-642.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.021        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/635

图 1  试验区域实景照片
图 2  试验区坐标系构建示意图
图 3  坐标系旋转示意图
图 4  二维作业路径示意图
图 5  路径规划算法流程图
图 6  三维作业路径示意图(航向角为60°)
参数数值参数数值
飞行速度/(m·s?12喷洒速度/(kg·s?10.1
空载质量/kg35风阻系数0.5
最大载药质量/kg30旋翼总面积/m24.39
空气密度/(kg·m?31.21重力加速度/(m·s?29.8
表 1  大疆T30植保无人机能耗计算相关参数
参数数值
最小能耗情况最大能耗情况平均
角度/(°)91147
补给次数01
总能耗/ kJ83.47139.77100.72
工作能耗/ kJ83.47111.83100.46
补给能耗/ kJ27.950.26
总时间/s292.63425.29377.24
工作时间/s292.63380.47319.03
补给时间/s066.8258.21
表 2  植保无人机路径规划结果
图 7  无人机最小能耗路径与最大能耗路径
图 8  采样果树分布示意图
参数数值
最小能耗情况最大能耗情况
角度/(°)91147
补给次数11
总能耗/(mA·h)20 88026 390
工作能耗/(mA·h)17 12221 112
补给能耗/(mA·h)3 7585 283
总时间/s557.98666.73
工作时间/s480.57582.69
补给时间/s77.4184.04
表 3  T30植保无人机能耗试验结果
图 9  采样点水敏纸雾滴沉积分布图
图 10  采样果树雾滴沉积量
1 郑永军, 江世界, 陈炳太, 等 丘陵山区果园机械化技术与装备研究进展[J]. 农业机械学报, 2020, 51 (11): 1- 20
ZHENG Yongjun, JIANG Shijie, CHEN Bingtai, et al Research progress of orchard mechanization technology and equipment in hilly and mountainous areas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (11): 1- 20
doi: 10.6041/j.issn.1000-1298.2020.11.001
2 郑永军, 陈炳太, 吕昊暾, 等 中国果园植保机械化技术与装备研究进展[J]. 农业工程学报, 2020, 36 (20): 110- 124
ZHENG Yongjun, CHEN Bingtai, LV Haotun, et al Research progress of orchard plant protection mechanization technology and equipment in orchards in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (20): 110- 124
doi: 10.11975/j.issn.1002-6819.2020.20.014
3 王士林, 范道全, 李雪, 等 果园喷雾机具对施药人员体表污染的影响[J]. 生态与农村环境学报, 2020, 36 (12): 1612- 1618
WANG Shilin, FAN Daoquan, LI Xue, et al Effect of orchard sprayers on dermal exposure of operators[J]. Journal of Ecology and Rural Environment, 2020, 36 (12): 1612- 1618
4 温靖, 郭黎, 朱逸铭. 中国农业的未来有多美——专访国家精准农业航空施药技术国际联合研究中心首席科学家兰玉彬院士[EB/OL]. [2024-12-01]. https://www.cnki.com.cn/Article/CJFDTotal-NSGJ202136001.htm
5 YU S, ZHU J, ZHOU J, et al Key technology progress of plant-protection UAVs applied to mountain orchards: a review[J]. Agronomy, 2022, 12 (11): 2828
doi: 10.3390/agronomy12112828
6 曹光乔, 李亦白, 南风, 等 植保无人机飞控系统与航线规划研究进展分析[J]. 农业机械学报, 2020, 51 (8): 1- 16
CAO Guangqiao, LI Yibai, NAN Feng, et al Development and analysis of plant protection UAV flight control system and route planning research[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (8): 1- 16
doi: 10.6041/j.issn.1000-1298.2020.08.001
7 王宇, 陈海涛, 李海川 基于引力搜索算法的植保无人机三维路径规划方法[J]. 农业机械学报, 2018, 49 (2): 28- 33
WANG Yu, CHEN Haitao, LI Haichuan 3D path planning approach based on gravitational search algorithm for sprayer UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49 (2): 28- 33
doi: 10.6041/j.issn.1000-1298.2018.02.004
8 王宇, 王文浩, 徐凡, 等 基于改进蚁群算法的植保无人机路径规划方法[J]. 农业机械学报, 2020, 51 (11): 103- 112
WANG Yu, WANG Wenhao, XU Fan, et al Path planning approach based on improved ant colony optimization for sprayer UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (11): 103- 112
doi: 10.6041/j.issn.1000-1298.2020.11.011
9 刘璐, 沈小伟, 葛超, 等 基于改进蚁群算法的植保无人机路径规划[J]. 计算机仿真, 2024, 41 (1): 39- 43
LIU Lu, SHEN Xiaowei, GE Chao, et al Path planning of plant protection UAV based on improved ant colony algorithm[J]. Computer Simulation, 2024, 41 (1): 39- 43
doi: 10.3969/j.issn.1006-9348.2024.01.009
10 严炜, 龙长江, 李善军 基于差分量子退火算法的农用无人机路径规划方法[J]. 华中农业大学学报, 2020, 39 (1): 180- 186
YAN Wei, LONG Changjiang, LI Shanjun path planning method for agricultural UAV based on DEQA algorithm[J]. Journal of Huazhong Agricultural University, 2020, 39 (1): 180- 186
11 张旭东, 于丽娅, 李少波, 等 元启发式算法在植保无人机路径规划中的研究进展[J]. 农机化研究, 2025, 47 (3): 1- 9
ZHANG Xudong, YU Liya, LI Shaobo, et al Research progress of metaheuristic algorithm in algorithms in path planning of plant protection UAV[J]. Journal of Agricultural Mechanization Research, 2025, 47 (3): 1- 9
12 DONG R, WANG S, WANG G, et al Hybrid optimization algorithm based on wolf pack search and local search for solving traveling salesman problem[J]. Journal of Shanghai Jiaotong University: Science, 2019, 24 (1): 41- 47
doi: 10.1007/s12204-019-2039-9
13 徐博, 陈立平, 徐旻, 等 多作业区域植保无人机航线规划算法[J]. 农业机械学报, 2017, 48 (2): 75- 81
XU Bo, CHEN Liping, XU Min, et al Path planning algorithm for plant protection UAVs in multiple operation areas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (2): 75- 81
doi: 10.6041/j.issn.1000-1298.2017.02.010
14 陶德臣, 祖家奎, 高尚文 基于全覆盖路径的植保无人直升机航线规划方法与实现技术[J]. 电子测量技术, 2020, 43 (7): 50- 55
TAO Dechen, ZU Jiakui, GAO Shangwen Planning method and implementation technology of plant protection unmanned helicopter route based on full coverage path[J]. Electronic Measurement Technology, 2020, 43 (7): 50- 55
15 陶德臣. 植保无人直升机航线规划方法与实现技术研究[D]. 南京: 南京航空航天大学, 2021.
TAO Dechen. Research on route planning method and implementation technology of plant protection unmanned helicopter. [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.
16 杨润书, 马燕燕, 殷海舟. 低空无人机航摄系统地面分辨率与航高的关系研究[J]. 地矿测绘, 2013, 29(3): 1-2.
Yang Runshu, Ma Yanyan, Yin Haizhou. Relationship between ground resolution and flying height about the low altitude unmanned aerial vehicle aerophotographic system [J]. Surveying and Mapping of Geology and Mineral Resources . 2013, 29(3): 1–2.
17 王宇, 王文浩, 徐凡, 等. 基于改进蚁群算法的植保无人机路径规划方法[J]. 农业机械学报, 2020, 51(11): 103–112.
WANG Yu, WANG Wenhao, XU Fan, et al. Path planning approach based on improved ant colony optimization for sprayer UAV [J]. Transactions of the Chinese Society for Agricultural Machinery , 2020, 51(11): 103−112.
18 徐博, 陈立平, 谭彧, 等 基于无人机航向的不规则区域作业航线规划算法与验证[J]. 农业工程学报, 2015, 31 (23): 173- 178
XU Bo, CHEN Liping, TAN Yu, et al Route planning algorithm and verification based on UAV operation path angle in irregular area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (23): 173- 178
doi: 10.11975/j.issn.1002-6819.2015.23.023
19 周莉萍. 无人机机载喷雾系统喷雾特性及影响因素的研究[D]. 杭州: 浙江大学, 2017.
ZHOU Liping. Research on spray characteristics and influencing factors of UAV airborne spray system [D]. Hangzhou: Zhejiang University, 2017.
20 边永亮, 李建平, 王鹏飞, 等 单旋翼无人机流场分布特征及作业性能试验研究[J]. 河北农业大学学报, 2020, 43 (3): 115- 120
BIAN Yongliang, LI Jianping, WANG Pengfei, et al Experimental study on distribution characteristics and operating performance of airflow field in single rotor UAV[J]. Journal of hebei agricultural university, 2020, 43 (3): 115- 120
[1] 刘宇庭,郭世杰,唐术锋,张学炜,李田田. 改进A*与ROA-DWA融合的机器人路径规划[J]. 浙江大学学报(工学版), 2024, 58(2): 360-369.
[2] 陈丽芳,杨火根,陈智超,杨杰. B样条技术与遗传算法融合的全局路径规划[J]. 浙江大学学报(工学版), 2024, 58(12): 2520-2530.
[3] 陈淑琴,虞昂,明焱,丁德,杨毅. 夏热冬冷地区近零能耗住宅可再生能源设计[J]. 浙江大学学报(工学版), 2023, 57(4): 795-804.
[4] 陈俊杰,李洪均,朱晓军. 采用Benders分解的5G核心网用户面动态部署算法[J]. 浙江大学学报(工学版), 2023, 57(3): 625-631.
[5] 那威,邴佳乐,刘品妍. 基于贝叶斯MCMC方法的城市建筑供热能耗基准[J]. 浙江大学学报(工学版), 2023, 57(10): 2106-2115.
[6] 靳佳澳,沈洪垚,孙扬帆,林嘉浩,陈静霓. 面向电弧增材的单线激光扫描路径规划[J]. 浙江大学学报(工学版), 2023, 57(1): 21-31.
[7] 徐维祥,康楠,徐婷. 基于出行计划数据的最优路径规划方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1542-1552.
[8] 于军琪,杨思远,赵安军,高之坤. 基于神经网络的建筑能耗混合预测模型[J]. 浙江大学学报(工学版), 2022, 56(6): 1220-1231.
[9] 戴天伦,李博涵,臧亚磊,戴华,于自强,陈钢. PORP:面向无人驾驶的路径规划并行优化策略[J]. 浙江大学学报(工学版), 2022, 56(2): 329-337.
[10] 陈中,徐晓,王海伟,罗宏浩,陈轩. 基于备用边缘节点的居民区用电任务卸载优化策略[J]. 浙江大学学报(工学版), 2021, 55(5): 917-926.
[11] 吴敬理,伊国栋,裘乐淼,张树有. 高温混合障碍空间中的移动机器人路径规划[J]. 浙江大学学报(工学版), 2021, 55(10): 1806-1814.
[12] 李鑫悦,陈淑琴,李鸿亮,楼云霄,李佳鹤. 应用数据挖掘的高校教学建筑空调使用及其能耗分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1677-1689.
[13] 刘洁,董献洲,韩维,王昕炜,刘纯,贾珺. 采用牛顿迭代保辛伪谱算法的舰载机甲板路径规划[J]. 浙江大学学报(工学版), 2020, 54(9): 1827-1838.
[14] 刘军,冯硕,任建华. 移动机器人路径动态规划有向D*算法[J]. 浙江大学学报(工学版), 2020, 54(2): 291-300.
[15] 梁锦,罗坤,王强,杨续超,樊建人,张峻溪. 高反照率屋顶对城市热岛及空调能耗的影响[J]. 浙江大学学报(工学版), 2020, 54(10): 1993-2000.