Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 917-926    DOI: 10.3785/j.issn.1008-973X.2021.05.012
电气工程     
基于备用边缘节点的居民区用电任务卸载优化策略
陈中1(),徐晓1(),王海伟2,罗宏浩1,陈轩3
1. 东南大学 电气工程学院,江苏 南京 210096
2. 国网安徽省电力有限公司 合肥供电公司,安徽 合肥 230000
3. 国网江苏省电力有限公司 检修分公司,江苏 南京 211102
Optimization strategy for unloading power tasks in residential areas based on alternate edge nodes
Zhong CHEN1(),Xiao XU1(),Hai-wei WANG2,Hong-hao LUO1,Xuan CHEN3
1. School of Electrical Engineering, Southeast University, Nanjing 210096, China
2. Hefei Power Supply Company, State Grid Anhui Electric Power Co. Ltd, Hefei 230000, China
3. Maintenance Branch, State Grid Jiangsu Electric Power Co. Ltd, Nanjing 211102, China
 全文: PDF(1925 KB)   HTML
摘要:

为了实现有序用电,保证居民区配电系统安全性,将通信领域的任务卸载概念拓展并应用于居民区信息管理中,提出基于边缘计算的居民区用电信息管理系统和计算任务的优化卸载策略. 阐明边缘计算的相关定义,从移动边缘计算场景中拓展任务卸载的概念,并在居民区用电信息管理模型中增加备用边缘节点角色. 提出基于任务卸载的管理框架及流程,并对居民区用电设备产生的计算任务进行分析,通过建立计算模型和多用户博弈模型,求解纳什均衡,得到最优任务卸载决策. 用算例验证备用边缘节点的必要性以及所提策略相较于传统计算模式的优越性,为万物互联时代的居民区用电信息管理中的数据处理环节带来新的思路和方法.

关键词: 边缘计算任务卸载居民区用电信息管理多用户博弈时延能耗    
Abstract:

In order to propel power consumption orderly and ensure the security of electricity distribution system in residential area, the concept of task offloading in the communication field was expanded and applied to residential area information management, the electricity information management system in residential area and the optimal offloading strategy of computing tasks based on edge calculation were also proposed. The definition of edge computing was clarified, the concept of task offloading was extended from the mobile edge computing scenario, as well as the role of alternate edge node was added in the residential area electricity information management model. The framework and process of task offloading were proposed, at the same time, the calculation tasks generated by electrical equipment in residential areas were analyzed. Then, the Nash equilibrium was achieved to obtain the optimal task offloading decision by establishing a computing model and a multi-user game model. An example was used to verify the necessity of the alternate edge node and the superiority of the proposed strategy compared with the traditional computing model. The proposed strategy brings new ideas and methods for the data processing in the residential area electricity information management in the era of Internet of all things.

Key words: edge computing    task offloading    residential area    electricity information management    multi-user game    delay    energy consumption
收稿日期: 2020-07-24 出版日期: 2021-06-10
CLC:  TM 73  
基金资助: 国家电网总部资助项目(SGJSJX00YJJS1800722)
作者简介: 陈中(1975—),男,研究员,博导,从事能源互联网研究. orcid.org/0000-0001-7513-3981. E-mail: zhongchen@seu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈中
徐晓
王海伟
罗宏浩
陈轩

引用本文:

陈中,徐晓,王海伟,罗宏浩,陈轩. 基于备用边缘节点的居民区用电任务卸载优化策略[J]. 浙江大学学报(工学版), 2021, 55(5): 917-926.

Zhong CHEN,Xiao XU,Hai-wei WANG,Hong-hao LUO,Xuan CHEN. Optimization strategy for unloading power tasks in residential areas based on alternate edge nodes. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 917-926.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.012        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/917

图 1  居民区用电信息管理系统组成
图 2  居民区信息交互框架
终端类型 产生任务的数据量/
kB
产生任务的计算量/
cycles
计算结果量/
kB
计算能力/
GHz
CPU功率/
W
计算内存 对于时延和
能耗的敏感度
终端设备(ECN) $b(n) $ $ d(n) $ $ r(n) $ $ f(n) $ $ c(n) $ ? $ \lambda_{\rm{t}} (n) $$ \lambda_{\rm{e}} (n)$
备用边缘节点(AECN) ? ? ? $ f(m) $ $ c(m) $ $k(m) $ ?
云平台 ? ? ? $ f(c) $ $ c(c) $ ? ?
表 1  任务卸载框架下的参数设定
图 3  任务卸载优化流程
终端设
备序号
$ c(n)$/W $b(n) $/kB $d(n) $/cycles $r(n) $/kB $f(n) $/GHz ${\lambda _{\rm{t}}}(n)$ ${\lambda _{\rm{e}}}(n)$
1 4 1000 3000 25 10 0 1.0
2 5 500 1000 20 5 0.2 0.8
3 6 2000 4000 250 12 0.5 0.5
4 7 1500 2000 2000 8 0.8 0.2
5 7 2000 4000 250 12 1.0 0
6 6 500 1000 20 5 0.2 0.8
7 5 1000 3000 25 10 0.8 0.2
8 4 2000 4000 250 12 0.5 0.5
9 5 500 1000 20 5 0.2 0.8
10 4 1500 2000 2000 8 0.8 0.2
11 6 1000 3000 25 10 0.5 0.5
12 5 500 1000 20 5 0.5 0.5
13 7 1500 2000 2000 8 1.0 0
14 5 500 1000 20 5 0 1.0
15 4 1000 3000 25 10 0.5 0.5
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
表 2  各ECN终端信息参数
参数 数值
备用边缘节点计算能力/GHz 15
备用边缘节点容量/kB 6×106
信道带宽/MHz 1
移动设备发射功率/W 2
移动设备接收功率/W 2
背景噪音/dBm ?80
信道增益 0.9
云平台计算能力/GHz 40
云平台容量/kB 5×108
MEC与中心云数据传输速率/Mbps 106
云端处理CPU单位功率/W 15
云端发射功率/W 2
云端设备接收功率/W 2
表 3  AECN及云平台的信息参数
类型 终端
数量
须上传
数据量/kB
任务计算
量/(105
cycles)
结果数
据量/kB
计算能
力/(106
cycles)
分布式电源 10 1000 3000 25 500
电动汽车 16 500 1000 20 800
储能设备 13 800 2000 100 600
家庭电力信息 11 2000 4000 250 1200
表 4  不同类型计算任务的终端参数
An Xn An Xn An Xn An Xn
1 1 1 1 ?1 1 5 1
2 1 ?1 1 ?1 1 ?1 1
?1 1 1 1 ?1 1 ?1 1
?1 1 4 1 1 1 3 1
?1 1 ?1 1 ?1 1 2 1
4 1 2 1 ?1 1 ?1 1
?1 1 ?1 1 ?1 1 1 1
?1 1 4 1 4 1 ?1 1
3 1 ?1 1 2 1 ?1 1
?1 1 1 1 5 1 3 1
?1 1 ?1 1 5 1 ?1 1
3 1 ?1 1 ?1 1 ? ?
?1 1 ?1 1 ?1 1 ? ?
表 5  任务卸载博弈结果
图 4  参数随博弈次数的变化曲线
图 5  有益卸载任务数量变化趋势
图 6  选择卸载任务的用户数量变化曲线
$\lambda_{\rm{e}} $$\lambda_{\rm{t}} $ Noff $\lambda_{\rm{e}} $$\lambda_{\rm{t}} $ Noff
1∶0 0 4∶6 34
7∶3 12 3∶7 47
6∶4 16 0∶1 50
5∶5 22 ? ?
表 6  能耗与时延占比对卸载决策的影响
图 7  3种计算方式的负载结果对比
图 8  不同偏好设置下不同计算模式的负载结果
图 9  有、无备用边缘节点参与实验的对比结果
1 徐建军, 王保娥, 闫丽梅, 等 混合能源协同控制的智能家庭能源优化控制策略[J]. 电工技术学报, 2017, 32 (12): 214- 223
XU Jian-jun, WANG Bao-e, YAN Li-mei, et al The strategy of the smart home energy optimization control of the hybrid energy coordinated control[J]. Transaction of Electrotechnical Society, 2017, 32 (12): 214- 223
2 祁兵, 夏琰, 李彬, 等 基于边缘计算的家庭能源管理系统: 架构、关键技术及实现方式[J]. 电力建设, 2018, 39 (3): 33- 41
QI Bing, XIA Yan, LI Bin, et al Family energy management system based on edge computing: architecture, key technology and implementation[J]. Electric Power Construction, 2018, 39 (3): 33- 41
doi: 10.3969/j.issn.1000-7229.2018.03.004
3 徐晓, 陈中, 丁宏恩, 等 面向区域售电公司的边缘计算架构设计探讨[J]. 电力建设, 2019, 40 (7): 41- 47
XU Xiao, CHEN Zhong, DING Hong-en, et al Discussion on the design of edge computing architecture for regional electricity retailer[J]. Electric Power Construction, 2019, 40 (7): 41- 47
doi: 10.3969/j.issn.1000-7229.2019.07.006
4 边缘计算产业联盟. 边缘计算产业联盟白皮书[EB/OL]. (2016-11-30) [2020-06-12]. http://www.Ecconsortium.Org/Uploads/file/20161208/1481181867831374.pdf.
5 HAN G J, LIU L, CHAN S, et al HySense: a hybrid mobile crowd Sensing framework for sensing opportunities compensation under dynamic coverage constraint[J]. IEEE Communications Magazine, 2017, 55 (3): 93- 99
doi: 10.1109/MCOM.2017.1600658CM
6 OLARIU S, KHALIL I, ABUELELA M Taking VANET to the clouds[J]. International Journal of Pervasive Computing and Communications, 2011, 7 (1): 7- 21
doi: 10.1108/17427371111123577
7 MACH P, BECVAR Z Mobile edge computing: a survey on architecture and computation offloading[J]. IEEE Communications Surveys and Tutorials, 2017, 19 (3): 1628- 1656
doi: 10.1109/COMST.2017.2682318
8 FLORES H, HUI P, TARKOMA S, et al Mobile code offloading: from concept to practice and beyond[J]. IEEE Communications Magazine, 2015, 53 (3): 80- 88
doi: 10.1109/MCOM.2015.7060486
9 卢海峰, 顾春华, 罗飞, 等 基于深度强化学习的移动边缘计算任务卸载研究[J]. 计算机研究与发展, 2020, 57 (7): 1539- 1554
LU Hai-feng, GU Chun-hua, LUO Fei, et al Research on task offloading based on deep reinforcement leraring in mobile edge computing[J]. Journal of Computer Research and Development, 2020, 57 (7): 1539- 1554
doi: 10.7544/issn1000-1239.2020.20190291
10 闫伟, 申滨, 刘笑笑 基于自适应遗传算法的MEC任务卸载及资源分配[J]. 电子技术应用, 2020, 46 (8): 95- 100
YAN Wei, SHEN Bin, LIU Xiao-xiao Offloading and resource allocation of MEC based on adaptive genetic algorithm[J]. Application of Electronic Technique, 2020, 46 (8): 95- 100
11 唐伦,?胡彦娟,?刘通,?等 移动边缘计算中基于 Lyapunov 的任务卸载与资源分配算法[J]. 计算机工程, 2021, 47 (3): 29- 36
TANG?Lun,?HU?Yan-juan,?LIU?Tong,?et?al Task?offloading?and resource?allocation?algorithm?based?on?lyapunov?in?mobile?edge computing[J]. Computer Engineering, 2021, 47 (3): 29- 36
12 张文杰, 魏振春, 徐俊逸, 等 移动边缘计算中的低能耗任务卸载决策算法[J]. 合肥工业大学学报: 自然科学版, 2020, 43 (6): 770- 776
ZHANG Wen-jie, WEI Zhen-chun, XU Jun-yi, et al Task-offloading decision algorithm for reducing energy consumption of base stations in MEC[J]. Journal of Hefei University of Technology: Natural Science, 2020, 43 (6): 770- 776
doi: 10.3969/j.issn.1003-5060.2020.06.010
13 郭煜 移动边缘计算中带有缓存机制的任务卸载策略[J]. 计算机应用与软件, 2019, 36 (6): 114- 119
GUO Yu Tasks offloading strategy with caching mechanism in mobile margin computing[J]. Computer Applications and Software, 2019, 36 (6): 114- 119
doi: 10.3969/j.issn.1000-386x.2019.06.023
14 MAO Y, ZHANG J, LETAIEFK B Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34 (12): 3590- 3605
doi: 10.1109/JSAC.2016.2611964
15 谷晓会, 章国安 移动边缘计算在车载网中的应用综述[J]. 计算机应用研究, 2020, 37 (6): 1615- 1621
GU Xiao-hui, ZHANG Guo-an Survey of mobile edge computing applications in vehicular networks[J]. Application Research of Computers, 2020, 37 (6): 1615- 1621
16 张海波, 栾秋季, 朱江, 等 基于移动边缘计算的V2X任务卸载方案[J]. 电子与信息学报, 2018, 40 (11): 2736- 2743
ZHANG Hai-bo, LUAN Qiu-ji, ZHU Jiang, et al V2X task offloading scheme based on mobile edge computing[J]. Journal of Electronics and Information Technology, 2018, 40 (11): 2736- 2743
17 ZHANG K, MAO Y M, LENG S P, et al Predictive offloading in cloud-driven vehicles: using mobile-edge computing for a promising network paradigm[J]. IEEE Vehicular Technology Magazine, 2017, 12 (2): 36- 44
doi: 10.1109/MVT.2017.2668838
18 景泽伟, 杨清海, 秦猛 移动边缘计算中的时延和能耗均衡优化算法[J]. 北京邮电大学学报, 2020, 43 (2): 110- 115
JING Ze-wei, YANG Qing-hai, QING Meng A delay and energy tradeoff optimization algorithm for task offloading in mobile-edge computing[J]. Journal of Beijing University of Posts and Telecommunications Networks, 2020, 43 (2): 110- 115
19 田辉, 范绍帅, 吕昕晨, 等 面向5G需求的移动边缘计算[J]. 北京邮电大学学报, 2017, 40 (2): 1- 10
TIAN Hui, FAN Shao-shuai, LV Xin-chen, et al Mobile edge computing for 5G requirements[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40 (2): 1- 10
20 孙毅, 刘昌利, 刘迪, 等 面向居民用户群的多时间尺度需求响应协同策略[J]. 电网技术, 2019, 43 (11): 4170- 4177
SUN Yi, LIU Chang-li, LIU Di, et al A multi-time scale demand response collaborative strategy for residential user groups[J]. Power System Technology, 2019, 43 (11): 4170- 4177
21 MO W, YANG C, CHEN X, et al Optimal charging navigation strategy design for rapid charging electric vehicles[J]. Energies, 2019, 12 (6): 962
doi: 10.3390/en12060962
22 李勤超, 周立中, 赵艳龙, 等 基于分布式光伏典型日曲线的统调负荷预测方法[J]. 浙江电力, 2019, 38 (6): 113- 117
LI Qin-chao, ZHOU Li-zhong, ZHAO Yan-long, et al A unified dispatch load forecasting method based on the typical daily load curve of distributed PV power[J]. Zhejiang Electric Power, 2019, 38 (6): 113- 117
23 LOGHIN D, RAMAPANTULU L, TEOY M. On understanding time, energy and cost performance of wimpy heterogeneous systems for edge computing [C]// 2017 IEEE International Conference on Edge Computing. Honolulu: IEEE, 2017: 1-8.
24 谢人超, 廉晓飞, 贾庆民, 等 移动边缘计算卸载技术综述[J]. 通信学报, 2018, 39 (11): 138- 155
XIE Ren-chao, LIAN Xiao-fei, JIA Qing-min, et al Survey on computation offloading in mobile edge computing[J]. Journal on Communications, 2018, 39 (11): 138- 155
doi: 10.11959/j.issn.1000-436x.2018215
25 BICER T, CHIU D, AGRAWAL G. Time and cost sensitive data-intensive computing on hybrid clouds [C]// 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Ottawa: IEEE, 2012: 636-643.
26 刘国强. 基于移动边缘计算的任务卸载策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
LIU Guo-qiang. Research on offloading strategy based on mobile edge computing [D]. Harbin: Harbin Institute of Technology, 2018.
[1] 李鑫悦,陈淑琴,李鸿亮,楼云霄,李佳鹤. 应用数据挖掘的高校教学建筑空调使用及其能耗分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1677-1689.
[2] 齐平,束红. 智慧医疗场景下考虑终端移动性的任务卸载策略[J]. 浙江大学学报(工学版), 2020, 54(6): 1126-1137.
[3] 梁锦,罗坤,王强,杨续超,樊建人,张峻溪. 高反照率屋顶对城市热岛及空调能耗的影响[J]. 浙江大学学报(工学版), 2020, 54(10): 1993-2000.
[4] 欧阳永强,张新艳. 考虑堆垛机加减速的节能自动立库设计[J]. 浙江大学学报(工学版), 2019, 53(9): 1681-1688.
[5] 申明,高青,王炎,张天时. 电动汽车电池热管理系统设计与分析[J]. 浙江大学学报(工学版), 2019, 53(7): 1398-1406.
[6] 从硕,陈佳明,蔡景成,孙瑞松,董建华,郭飞. 加湿除湿脱盐系统的热力学分析及实验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 684-691.
[7] 边宇, 马源. 考虑视觉舒适度的动态采光模拟与照明能耗分析[J]. 浙江大学学报(工学版), 2018, 52(9): 1638-1643.
[8] 刘洲洲, 李士宁, 李彬, 王皓, 张倩昀, 郑然. 基于弹性碰撞优化算法的传感云资源调度[J]. 浙江大学学报(工学版), 2018, 52(8): 1431-1443.
[9] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[10] 赖晓翰, 文昊翔, 陈隆道. 潮间带无线传感器网络路由算法[J]. 浙江大学学报(工学版), 2018, 52(12): 2414-2422.
[11] 钟麒, 张斌, 洪昊岑, 杨华勇. 基于电流反馈的高速开关阀3电压激励控制策略[J]. 浙江大学学报(工学版), 2018, 52(1): 8-15.
[12] 陆源源, 王慧, 宋春跃. 考虑列车混行的运行调度一体化优化方法[J]. 浙江大学学报(工学版), 2018, 52(1): 106-116.
[13] 谭青, 张逸超, 夏毅敏, 高浩. TBM盘形滚刀切削饱水岩石试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 914-921.
[14] 傅新, 钱晓倩, 钱匡亮, 董凯, 阮方. 夏热冬冷地区采暖空调计算期确定方法[J]. 浙江大学学报(工学版), 2017, 51(4): 729-738.
[15] 王自立, 张树有, 裘乐淼. 基于可信度区间的注塑装备设计塑化能耗分析[J]. 浙江大学学报(工学版), 2017, 51(2): 328-335.