Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (6): 1126-1137    DOI: 10.3785/j.issn.1008-973X.2020.06.009
计算机技术     
智慧医疗场景下考虑终端移动性的任务卸载策略
齐平(),束红
铜陵学院 数学与计算机学院,服务计算研究所,安徽 铜陵 244000
Task offloading strategy considering terminal mobility in medical wisdom scenario
Ping QI(),Hong SHU
College of Mathematics and Computer Science, Institute of Service Computing, Tongling University, Tongling 244000, China
 全文: PDF(1813 KB)   HTML
摘要:

针对工作流任务、边缘服务器无线信号覆盖范围、智慧医疗场景以及终端移动路径,分别构建模型进行描述,根据移动终端的实时位置和移动速率构建基于移动路径的工作流任务执行时间及能耗模型. 根据边缘服务器的无线通信模型,引入任务执行延迟和任务迁移2种情况以保障服务的连续性和执行时间限制. 从全局角度综合考虑任务在云端、边缘服务器和本地的执行效益,设计工作流任务优先级划分算法和边缘服务器卸载优化算法,并使用遗传算法设计基于最佳移动路径的工作流任务卸载决策及调度算法,在可选路径中搜索满足用户响应时间约束,且移动端能耗最低的最佳路径和相应的任务卸载、调度方案. 仿真结果说明:该算法能够合理地分配计算资源,在用户响应时间约束下充分降低移动终端能耗,相较未考虑终端移动性的卸载算法,移动端能耗降低了19.8%.

关键词: 移动边缘计算智慧医疗计算卸载边缘服务器遗传算法    
Abstract:

The workflow task, coverage of wireless communication, medical wisdom scenario and moving path were modeled, respectively. According to the location and the velocity of the mobile terminal, the execution time and energy consumption model based on the moving path were constructed. Based on the wireless communication model of different edge servers, task deferred execution and task migration were introduced to guarantee the service continuity and execution time constraint. Then, considering the execution benefits of the cloud, the edge server and the mobile terminal from a global viewpoint, the priority segmentation algorithm and the task offloading optimization algorithm were proposed. Meanwhile, the genetic algorithm was used to find the optimal path and solve the energy consumption optimization problem with the constraint of response time. The experimental results show that the proposed algorithm lowered the mobile energy consumption by 19.8%, compared with the offloading algorithm without considering terminal mobility. Thus, the algorithm can effectively reduce the energy consumption of edge device with the constraint of response time.

Key words: mobile edge computing    medical wisdom    computation offloading    edge server    genetic algorithm
收稿日期: 2019-12-09 出版日期: 2020-07-06
CLC:  TP 393  
基金资助: 国家自然科学基金资助项目(61300042);安徽省高校自然科学基金重点资助项目(KJ2019A0704);铜陵学院校级自然科学重点研究资助项目(2019xyzd06)
作者简介: 齐平(1981—),男,副教授,博士,从事可信计算、移动边缘计算研究. orcid.org/0000-0001-7305-7911. E-mail: qiping929@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
齐平
束红

引用本文:

齐平,束红. 智慧医疗场景下考虑终端移动性的任务卸载策略[J]. 浙江大学学报(工学版), 2020, 54(6): 1126-1137.

Ping QI,Hong SHU. Task offloading strategy considering terminal mobility in medical wisdom scenario. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1126-1137.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.06.009        http://www.zjujournals.com/eng/CN/Y2020/V54/I6/1126

图 1  移动边缘计算(MEC)环境下的4种计算卸载模型
图 2  移动边缘环境下智慧医院及移动路径剖面图
图 3  移动边缘环境下智慧医院及移动路径平面图
图 4  工作流实例及抽象工作流有向无环(DAG)图
图 5  边缘服务器能耗模型
图 6  移动终端数据发送过程
图 7  任务卸载失败情形示意图
图 8  任务延迟执行及任务迁移执行
图 9  不同移动路径下的任务执行能耗比较
图 10  不同边缘服务器数量情况下的任务执行能耗比较
图 11  不同任务数情况下WTOSSABOP、CLOUD、EDGE、MOBILE和LoPRTC的任务执行能耗比较
图 12  不同任务数情况下WTOSSABOP、CLOUD、EDGE、MOBILE和LoPRTC的任务完工时间比较
图 13  不同任务类型情况下WTOSSABOP、CLOUD、EDGE、MOBILE和LoPRTC的任务执行能耗比较
图 14  不同任务类型情况下WTOSSABOP、CLOUD、EDGE、MOBILE和LoPRTC的任务完工时间比较
1 ABBAS N, ZHANG Y, TAHERKORDI A, et al Mobile edge computing: a survey[J]. IEEE Internet of Things Journal, 2017, 5 (1): 450- 465
2 施巍松, 孙辉, 曹杰, 等 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54 (5): 907- 924
SHI Wei-song, SUN Hui, CAO Jie, et al Edge computing: an emerging model for the internet ofeverything era[J]. Journal of Computer Research and Development, 2017, 54 (5): 907- 924
doi: 10.7544/issn1000-1239.2017.20160941
3 施巍松, 张星洲, 王一帆, 等 边缘计算: 现状与展望[J]. 计算机研究与发展, 2019, 56 (01): 73- 93
SHI Wei-song, ZHANG Xing-zhou, WANG Yi-fan, et al Edge computing: state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56 (01): 73- 93
4 倪明选, 张黔, 谭浩宇, 等 智慧医疗——从物联网到云计算[J]. 中国科学: 信息科学, 2013, 43 (4): 515- 528
NI Ming-xuan, ZHANG Qian, TAN Hao-yu, et al Smart healthcare: from IoT to cloud computing[J]. SCIENTIA SINICA Informationis, 2013, 43 (4): 515- 528
doi: 10.1360/112012-616
5 邱宇, 王持, 齐开悦, 等 智慧健康研究综述: 从云端到边缘的系统[J]. 计算机研究与发展, 2019, 57 (1): 53- 73
QIU Yu, WANG Chi, QI Kai-yue, et al A survey of smart health: system design from the cloud to the edge[J]. Journal of Computer Research and Development, 2019, 57 (1): 53- 73
6 MIN C, MAO S, LIU Y Big data: a survey[J]. Mobile Networks and Applications, 2014, 19 (2): 171- 209
doi: 10.1007/s11036-013-0489-0
7 谢人超, 廉晓飞, 贾庆, 等 移动边缘计算卸载技术综述[J]. 通信学报, 2018, 39 (11): 142- 159
XIE Ren-chao, LIAN Xiao-fei, JIA Qin, et al Survey on computation offloading in mobile edge computing[J]. Journal on Communications, 2018, 39 (11): 142- 159
8 CHAMLA V, THAM C K, CHALAPATHI G S S. Latency aware mobile task assignment and load balancing for edge cloudlets [C] // 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). Kona: IEEE, 2017: 587-592.
9 KUANG Z K, GUO S T, LIU J D, et al A quick-response framework for multi-user computation offloading in mobile cloud computing[J]. Future Generation Computer Systems, 2018, 81 (4): 166- 176
10 ZHANG J, HU X, NING Z, et al Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks[J]. IEEE Internet of Things Journal, 2018, 5 (4): 2633
doi: 10.1109/JIOT.2017.2786343
11 WANG X, LUO D Energy efficiency based resource schedule in mobile cloud computing[J]. Journal of Computational and Theoretical Nanoscience, 2015, 12 (2): 239- 243
doi: 10.1166/jctn.2015.3724
12 袁友伟, 刘恒初, 俞东进, 等 面向边缘侧卸载优化的工作流动态关键路径调度算法[J]. 计算机集成制造系统, 2019, 25 (4): 798- 808
YUAN You-wei, LIU Heng-chu, YU Dong-jin, et al Offloading optimization base on dynamic critical path in mobile edge computing environment[J]. Computer Integrated Manufacturing Systems, 2019, 25 (4): 798- 808
13 徐佳, 李学俊, 丁瑞苗, 等 移动边缘计算中能耗优化的多重资源计算卸载策略[J]. 计算机集成制造系统, 2019, 25 (4): 954- 961
XU J, LI Xue-jun, DING Rui-miao, et al Energy efficient multi-resource computation offloading strategy in mobile edge computing[J]. Computer Integrated Manufacturing Systems, 2019, 25 (4): 954- 961
14 NAN Y, LI W, BAO W, et al Adaptive energy-aware computation offloading for cloud of things systems[J]. IEEE Access, 2017, 5: 23947- 23957
doi: 10.1109/ACCESS.2017.2766165
15 WANG W, ZHOU W. Computational offloading with delay and capacity constraints in mobile edge [C] // 2017 IEEE International Conference on Communications. Paris: IEEE, 2017: 1-6.
16 CHEN M, QIAN Y F, CHEN J, et al Privacy protection and intrusion avoidance for cloudlet-based medical data sharing[J]. IEEE Transactions on Cloud Computing, 2016, 2 (4): 2529- 2533
17 ZHAO H L, DENG S G, ZHANG C, et al. A mobility-aware cross-edge computation offloading framework for partitionable applications [C] // 2019 The International Conference on Web Services(ICWS). Milan: IEEE, 2019: 193-200.
18 NADEMBEGA A, HAFID A S, BRISEBOIS R. Mobility prediction model-based service migration procedure for follow me cloud to support QoS and QoE [C] // 2016 IEEE International Conference on Communications. Kuala Lumpur: IEEE, 2016: 1-6.
19 WANG S, URGAONKAR R, HE T, et al Dynamic service placement for mobile micro-clouds with predicted future costs[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28 (4): 1002- 1016
doi: 10.1109/TPDS.2016.2604814
20 ZHU T, SHI T, LI J, et al Task scheduling in deadline-aware mobile edge computing systems[J]. IEEE Internet of Things Journal, 2019, 6 (3): 4854- 4866
doi: 10.1109/JIOT.2018.2874954
21 KOMNIOS I, TSAPELI F, GORINSKY S Cost-effective multi-mode offloading with peer-assisted communications[J]. Ad Hoc Networks, 2015, 25: 370- 382
doi: 10.1016/j.adhoc.2014.07.028
[1] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[2] 季琳琳,王清威,周豪,郑美妹. 考虑顾客满意度的冷链水果路径优化[J]. 浙江大学学报(工学版), 2021, 55(2): 307-317.
[3] 孟祥飞,王仁广,徐元利. 双行星排汽车纯电驱动模式的转矩分配策略[J]. 浙江大学学报(工学版), 2020, 54(11): 2214-2223.
[4] 粟序明,方成刚,潘裕斌,吴伟伟,李亚萍,朱浪. 变照度下的视觉测量系统误差建模[J]. 浙江大学学报(工学版), 2020, 54(10): 1929-1935.
[5] 谭芳芳,朱俊江,严天宏,高志强,何岭松. 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报(工学版), 2020, 54(1): 40-47.
[6] 张曼, 施树明. 面向汽车运行工况设计的马氏链非等长交叉进化算法[J]. 浙江大学学报(工学版), 2018, 52(9): 1658-1666.
[7] 焦龙龙, 罗森林, 刘望桐, 潘丽敏, 张笈. 基于遗传算法的二进制程序模糊测试方法[J]. 浙江大学学报(工学版), 2018, 52(5): 1014-1019.
[8] 朱卓悦, 徐志刚, 沈卫东, 杨得玉. 基于遗传蝙蝠算法的选择性拆卸序列规划[J]. 浙江大学学报(工学版), 2018, 52(11): 2120-2127.
[9] 赵斌, 张松, 李剑峰. 基于零件摩擦学性能的磨削参数优化[J]. 浙江大学学报(工学版), 2018, 52(1): 16-23.
[10] 张玄武, 郑耀, 杨波威, 张继发. 基于级联前向网络的翼型优化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1405-1411.
[11] 张丽娜, 余阳. 海量O2O服务组合的优化[J]. 浙江大学学报(工学版), 2017, 51(6): 1259-1268.
[12] 苏亮, 宋明亮, 董石麟, 罗尧治. 循环遗传聚类法稳定图自动分析[J]. 浙江大学学报(工学版), 2017, 51(3): 514-523.
[13] 张俊红,郭迁,王健,徐喆轩,陈孔武. 塑料机油冷却器盖加强筋参数的多目标优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1360-1366.
[14] 司恩波, 王晶, 靳其兵, 周靖林. 工业无线网络链路选择与时隙分配的同步优化[J]. 浙江大学学报(工学版), 2016, 50(6): 1203-1213.
[15] 王树朋,黄凯,严晓浪. 基于遗传算法的覆盖率驱动测试产生器[J]. 浙江大学学报(工学版), 2016, 50(3): 580-588.