| 计算机技术 |
|
|
|
|
| 基于高精多尺度集成的轻量织物缺陷检测方法 |
张捷皓( ),张进峰,吴威涛,向忠*( ) |
| 浙江理工大学 机械工程学院,浙江 杭州 310018 |
|
| Lightweight fabric defect detection method based on high precision multi-scale integration |
Jiehao ZHANG( ),Jinfeng ZHANG,Weitao WU,Zhong XIANG*( ) |
| College of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China |
引用本文:
张捷皓,张进峰,吴威涛,向忠. 基于高精多尺度集成的轻量织物缺陷检测方法[J]. 浙江大学学报(工学版), 2025, 59(12): 2556-2565.
Jiehao ZHANG,Jinfeng ZHANG,Weitao WU,Zhong XIANG. Lightweight fabric defect detection method based on high precision multi-scale integration. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2556-2565.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.010
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2556
|
| 1 |
ZHAO Z, MA X, YANG X, et al. Research on fabric defect detection algorithm based on improved YOLOv5 [C]// IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference. Chongqing: IEEE, 2024: 387–391.
|
| 2 |
XIANG Z, SHEN Y, MA M, et al HookNet: efficient multiscale context aggregation for high-accuracy detection of fabric defects[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1- 11
|
| 3 |
WANG Y, XIANG Z, WU W, et al MCF-Net: a multi-scale context fusion network for real-time fabric defect detection[J]. Digital Signal Processing, 2025, 167: 105425
doi: 10.1016/j.dsp.2025.105425
|
| 4 |
LI Y, SONG L, CAI Y, et al Research on fabric surface defect detection algorithm based on improved Yolo_v4[J]. Scientific Reports, 2024, 14: 5537
doi: 10.1038/s41598-023-50671-7
|
| 5 |
ZHOU K, JIA J, WU W, et al Space-depth mutual compensation for fine-grained fabric defect detection model[J]. Applied soft computing, 2025, 172: 112869
doi: 10.1016/j.asoc.2025.112869
|
| 6 |
GIRSHICK R. Fast R-CNN [C]// IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440–1448.
|
| 7 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
| 8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
|
| 9 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517–6525.
|
| 10 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018−04−08)[2024−11−18]. https://arxiv.org/pdf/1804.02767.
|
| 11 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]// Computer Vision – ECCV 2016. Cham: Springer, 2016: 21–37.
|
| 12 |
LIU R, LEHMAN J, MOLINO P, et al. An intriguing failing of convolutional neural networks and the CoordConv solution [EB/OL]. (2018−12−03)[2024−11−18]. https://arxiv.org/pdf/1807.03247.
|
| 13 |
YANG G, LEI J, TIAN H, et al Asymptotic feature pyramid network for labeling pixels and regions[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (9): 7820- 7829
doi: 10.1109/TCSVT.2024.3376773
|
| 14 |
LIU B, WANG H, CAO Z, et al PRC-light YOLO: an efficient lightweight model for fabric defect detection[J]. Applied Sciences, 2024, 14 (2): 938
doi: 10.3390/app14020938
|
| 15 |
LUO X, NI Q, TAO R, et al A lightweight detector based on attention mechanism for fabric defect detection[J]. IEEE Access, 2023, 11: 33554- 33569
doi: 10.1109/ACCESS.2023.3264262
|
| 16 |
WANG Y, XU Y, YU Z, et al Color-patterned fabric defect detection based on the improved YOLOv5s model[J]. Textile Research Journal, 2023, 93 (21/22): 4792- 4803
|
| 17 |
GUO Y, KANG X, LI J, et al. Automatic fabric defect detection method using AC-YOLOv5 [J]. Electronics, 2023, 12(13): 2950.
|
| 18 |
LI X, ZHU Y A real-time and accurate convolutional neural network for fabric defect detection[J]. Complex and Intelligent Systems, 2024, 10 (3): 3371- 3387
|
| 19 |
XIANG Z, JIA J, ZHOU K, et al Block-wise feature fusion for high-precision industrial surface defect detection[J]. The Visual Computer, 2025, 41: 9277- 9295
doi: 10.1007/s00371-025-03927-4
|
| 20 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936–944.
|
| 21 |
OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning [C]// 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1–5.
|
| 22 |
ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box [EB/OL]. (2023−11−14) [2024−11−18]. https://arxiv.org/pdf/2311.02877.
|
| 23 |
LIU C, WANG K, LI Q, et al Powerful-IoU: more straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural Networks, 2024, 170: 276- 284
doi: 10.1016/j.neunet.2023.11.041
|
| 24 |
XU S, CHENG S, JIN S, et al Industrial fabric defect-generative adversarial network (IFD-GAN): high-fidelity fabric cross-scale defect samples synthesis method for enhancing automated recognition performance[J]. Engineering Applications of Artificial Intelligence, 2025, 161: 112296
doi: 10.1016/j.engappai.2025.112296
|
| 25 |
TIANCHI. Smart diagnosis of cloth flaw dataset [EB/OL]. (2020−10−21) [2024−11−18]. https://tianchi.aliyun.com/dataset/79336.
|
| 26 |
JOCHER, G. YOLOv5 by Ultralytics (Version 6.0) [EB/OL]. [2024−11−18]. https://doi.org/10.5281/zenodo.3908559.
|
| 27 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464–7475.
|
| 28 |
JOCHER G, QIU J, CHAURASIA A. Ultralytics YOLO (Version 8.0. 0) [EB/OL]. [2024−11−18]. https://github.com/ultralytics/ultralytics.
|
| 29 |
WANG C, YEH I, LIAO H. YOLOv9: learning what you want to learn using programmable gradient information [EB/OL]. (2024−02−29) [2024−11−18]. https://arxiv.org/pdf/2402.13616.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|