| 机械与能源工程 |
|
|
|
|
| 基于改进YOLO-v8的精密管件表面缺陷检测方法 |
刘子豪1,2( ),张佳欣1,薛峰3,张俊4,5,陈伟杰6,鹿业波6 |
1. 嘉兴大学 人工智能学院,浙江 嘉兴 314001 2. 天津大学 机械工程学院,天津 300072 3. 浙江迈思特液压管件股份有限公司,浙江 嘉兴 314303 4. 嘉兴南湖学院 机电工程学院,浙江 嘉兴 314001 5. 天津大学 电气自动化与信息工程学院,天津 300072 6. 嘉兴大学 机械工程学院,浙江 嘉兴 314001 |
|
| Surface defect detection method of precision pipe fittings based on improved YOLO-v8 |
Zihao LIU1,2( ),Jiaxin ZHANG1,Feng XUE3,Jun ZHANG4,5,Weijie CHEN6,Yebo LU6 |
1. School of Artificial Intelligence, Jiaxing University, Jiaxing 314001, China 2. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China 3. Zhejiang Master Hydraulic Fittings Co., Ltd, Jiaxing 314303, China 4. School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314001, China 5. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China 6. School of Mechanical Engineering, Jiaxing University, Jiaxing 314001, China |
引用本文:
刘子豪,张佳欣,薛峰,张俊,陈伟杰,鹿业波. 基于改进YOLO-v8的精密管件表面缺陷检测方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1514-1522.
Zihao LIU,Jiaxin ZHANG,Feng XUE,Jun ZHANG,Weijie CHEN,Yebo LU. Surface defect detection method of precision pipe fittings based on improved YOLO-v8. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1514-1522.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.019
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1514
|
| 1 |
WEN S, CHEN Z, LI C Vision-based surface inspection system for bearing rollers using convolutional neural networks[J]. Applied Sciences, 2018, 8 (12): 2565
doi: 10.3390/app8122565
|
| 2 |
TAO J, ZHU Y, JIANG F, et al Rolling surface defect inspection for drum-shaped rollers based on deep learning[J]. IEEE Sensors Journal, 2022, 22 (9): 8693- 8700
doi: 10.1109/JSEN.2022.3159743
|
| 3 |
XU L M, YANG Z Q, JIANG Z H, et al Light source optimization for automatic visual inspection of piston surface defects[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91 (5): 2245- 2256
|
| 4 |
FEYZA C, SERAP K, ALI O M, et al Online metallic surface defect detection using deep learning[J]. Emerging Materials Research, 2020, 9 (4): 1- 8
|
| 5 |
姜乐兵, 宋飞虎, 裴永胜, 等 基于粒子群优化Gabor滤波器的钢板表面缺陷检测[J]. 传感器与微系统, 2023, 42 (11): 135- 138 JIANG Lebing, SONG Feihu, PEI Yongsheng, et al Surface defect detection of steel plate based on PSO-Gabor filter[J]. Transducer and Microsystem Technologies, 2023, 42 (11): 135- 138
|
| 6 |
郭浩然, 郭继昌, 汪昱东 面向水下场景的轻量级图像语义分割网络[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1278- 1286 GUO Haoran, GUO Jichang, WANG Yudong Lightweight semantic segmentation network for underwater image[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1278- 1286
|
| 7 |
崔克彬, 焦静颐 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45 (1): 112- 125 CUI Kebin, JIAO Jingyi Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45 (1): 112- 125
|
| 8 |
王春梅, 刘欢 YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18 (1): 151- 160 WANG Chunmei, LIU Huan YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18 (1): 151- 160
doi: 10.3778/j.issn.1673-9418.2308060
|
| 9 |
ZHENG H, KONG L X, NAHAVANDI S Automatic inspection of metallic surface defects using genetic algorithms[J]. Journal of Materials Processing Technology, 2002, 125: 427- 433
|
| 10 |
STIVANELLO M E, MARCELLINO K J A machine vision system for online metal can-end rivet inspection[J]. Journal of Physics: Conference Series, 2019, 1335 (1): 012002
doi: 10.1088/1742-6596/1335/1/012002
|
| 11 |
SUN J, LI C, WU X J, et al An effective method of weld defect detection and classification based on machine vision[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (12): 6322- 6333
doi: 10.1109/TII.2019.2896357
|
| 12 |
HUSSAIN M YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11 (7): 677
doi: 10.3390/machines11070677
|
| 13 |
刘莫尘, 褚镇源, 崔明诗, 等. 基于改进YOLO v8-Pose的红熟期草莓识别和果柄关键点检测 [EB/OL]. (2023–09–12)[2024–05–21]. https://link.cnki.net/urlid/11.1964.S.20230911.2034.046.
|
| 14 |
谢碧森. 基于卷积神经网络的牛脸识别技术研究[D]. 昆明: 云南大学, 2021: 1–58. XIE Bisen. Research on cow face recognitiontechnology based on convolutional neural network [D]. Kunming: Yunnan University, 2021: 1–58.
|
| 15 |
张求星. 基于ByteTrack的自动驾驶多目标行人跟踪技术研究[D]. 北京: 军事科学院, 2023: 1–73. ZHANG Qiuxing. Research on ByteTrack based autonomous driving multi object pedestrian tracking technology [D]. Beijing: Academy of Military Science, 2023: 1–73.
|
| 16 |
杨观赐, 杨静, 苏志东, 等 改进的YOLO特征提取算法及其在服务机器人隐私情境检测中的应用[J]. 自动化学报, 2018, 44 (12): 2238- 2249 YANG Guanci, YANG Jing, SU Zhidong, et al An improved YOLO feature extraction algorithm and its application to privacy situation detection of social robots[J]. Acta Automatica Sinica, 2018, 44 (12): 2238- 2249
|
| 17 |
DUAN D Y, XIA Y J Pseudo color ghost coding imaging with pseudo thermal light[J]. Optics Communications, 2018, 413: 295- 298
doi: 10.1016/j.optcom.2017.12.064
|
| 18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
|
| 19 |
ZHOU Y, XU J IoT perception layer scheduling deadlock relieving optimization method[J]. Journal of Intelligent and Fuzzy Systems, 2020, 38 (6): 7521- 7529
|
| 20 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. (2020–04–23)[2024–05–21]. https://arxiv.org/pdf/2004.10934.
|
| 21 |
XING B, WANG W, QIAN J, et al A lightweight model for real-time monitoring of ships[J]. Electronics, 2023, 12 (18): 3804- 3821
doi: 10.3390/electronics12183804
|
| 22 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 7464–7475.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|