计算机与控制工程 |
|
|
|
|
基于多依赖图和知识融合的方面级情感分析模型 |
何勇禧( ),韩虎*( ),孔博 |
1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 |
|
Aspect-based sentiment analysis model based on multi-dependency graph and knowledge fusion |
Yongxi HE( ),Hu HAN*( ),Bo KONG |
1. School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
1 |
余传明 基于深度循环神经网络的跨领域文本情感分析[J]. 图书情报工作, 2018, 62 (11): 23- 34 YU Chuanming A cross-domain text sentiment analysis based on deep recurrent neural network[J]. Library and Information Service, 2018, 62 (11): 23- 34
|
2 |
KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks [C]// The 5th International Conference on Learning Representations . Toulon: ICLR, 2017.
|
3 |
程艳芬, 吴家俊, 何凡 基于关系门控图卷积网络的方面级情感分析[J]. 浙江大学学报: 工学版, 2023, 57 (3): 437- 445 CHENG Yanfen, WU Jiajun, HE Fan Aspect level sentiment analysis based on relation gated graph convolutional network[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (3): 437- 445
|
4 |
王婷, 朱小飞, 唐顾 基于知识增强的图卷积神经网络的文本分类[J]. 浙江大学学报: 工学版, 2022, 56 (2): 322- 328 WANG Ting, ZHU Xiaofei, TANG Gu Knowledge-enhanced graph convolutional neural networks for text classification[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (2): 322- 328
|
5 |
夏鸿斌, 顾艳, 刘渊 面向特定方面情感分析的图卷积过度注意(ASGCN-AOA)模型[J]. 中文信息学报, 2022, 36 (3): 146- 153 XIA Hongbin, GU Yan, LIU Yuan Graph convolution overattention (ASGCN-AOA) model for specific aspects of sentiment analysis[J]. Journal of Chinese Information Processing, 2022, 36 (3): 146- 153
|
6 |
ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . Brussels: Association for Computational Linguistics, 2018: 2205–2215.
|
7 |
王汝言, 陶中原, 赵容剑 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44 (3): 1111- 1118 WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian Multi-interaction graph convolutional networks for aspect-level sentiment analysis[J]. Journal of Electronics and Information Technology, 2022, 44 (3): 1111- 1118
|
8 |
ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing . Hong Kong: Association for Computational Linguistics, 2019: 4568–4578.
|
9 |
SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing . Hong Kong: Association for Computational Linguistics, 2019: 5679–5688.
|
10 |
WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics . [S.l.]: Association for Computational Linguistics, 2020: 3229–3238.
|
11 |
HE L, LEE K, LEWIS M, et al. Deep semantic role labeling: what works and what’s next [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) . Vancouver : Association for Computational Linguistics, 2017: 473−483.
|
12 |
SACHAN D S, ZHANG Y, QI P, et al. Do syntax trees help pre-trained transformers extract information? [C]// Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume . [S.l.]: Association for Computational Linguistics, 2021: 2647–2661.
|
13 |
LIU W, ZHOU P, ZHAO Z, et al. K-BERT: enabling language representation with knowledge graph [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [S.l.]: AAAI, 2020: 2901−2908.
|
14 |
孙佳慧, 韩萍, 程争 基于知识迁移和注意力融合的方面级文本情感分析[J]. 信号处理, 2021, 37 (8): 1384- 1391 SUN Jiahui, HAN Ping, CHENG Zheng Aspect-level sentiment analysis based on knowledge transfer and attention fusion[J]. Journal of Signal Processing, 2021, 37 (8): 1384- 1391
|
15 |
REN Z, ZENG G, CHEN L, et al A lexicon-enhanced attention network for aspect-level sentiment analysis[J]. IEEE Access, 2020, 8: 93464- 93471
doi: 10.1109/ACCESS.2020.2995211
|
16 |
VALLE-CRUZ D, FERNANDEZ-CORTEZ V, LÓPEZ-CHAU A, et al Does Twitter affect stock market decisions? Financial sentiment analysis during pandemics: a comparative study of the h1n1 and the covid-19 periods[J]. Cognitive Computation, 2022, 14: 372- 378
doi: 10.1007/s12559-021-09819-8
|
17 |
DISTANTE D, FARALLI S, RITTINGHAUS S, et al DomainSenticNet: an ontology and a methodology enabling domain-aware sentic computing[J]. Cognitive Computation, 2022, 14: 62- 77
doi: 10.1007/s12559-021-09825-w
|
18 |
BIAN X, FENG C, AHMAD A, et al. Targeted sentiment classification with knowledge powered attention network [C]// 2019 IEEE 31st International Conference on Tools with Artificial Intelligence . Portland: IEEE, 2019: 1073−1080.
|
19 |
CAMBRIA E, LI Y, XING F Z, et al. SenticNet 6: ensemble application of symbolic and subsymbolic ai for sentiment analysis [C]// Proceedings of the 29th ACM international conference on information and knowledge management . [S.l.]: ACM, 2020: 105−114.
|
20 |
LIANG B, SU H, GUI L, et al Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-Based Systems, 2022, 235: 107643
doi: 10.1016/j.knosys.2021.107643
|
21 |
WANG Z, WANG H, WEN J R, et al. An inference approach to basic level of categorization [C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management . [S.l.]: ACM, 2015: 653−662.
|
22 |
PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing . Doha: Association for Computational Linguistics, 2014: 1532−1543.
|
23 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) . Minneapolis: Association for Computational Linguistics, 2019: 4171–4186.
|
24 |
TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification [C]// Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers . Osaka: The COLING 2016 Organizing Committee, 2016: 3298–3307
|
25 |
ALTINOK D. Mastering spaCy: an end-to-end practical guide to implementing NLP applications using the Python ecosystem [M]. [S.l.]: Packt Publishing, 2021.
|
26 |
QI P, ZHANG Y, ZHANG Y, et al. Stanza: a Python natural language processing toolkit for many human languages [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations . [S.l.]: Association for Computational Linguistics, 2020: 101–108.
|
27 |
DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification [C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) . Baltimore: Association for Computational Linguistics, 2014: 49−54.
|
28 |
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. Semeval-2014 task 4: aspect based sentiment analysis [C]// Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval-2014) . Dublin: Association for Computational Linguistics, 2014: 27−35.
|
29 |
PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis [C]// Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) . Denver: Association for Computational Linguistics, 2015: 486−495.
|
30 |
PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5: aspect based sentiment analysis [C]// Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016) . San Diego: Association for Computational Linguistics, 2016: 19−30.
|
31 |
MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence . [S. l.]: AAAI, 2017: 4068–4074.
|
32 |
CHEN C, TENG Z, ZHANG Y. Inducing target-specific latent structures for aspect sentiment classification [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing . [S.l.] : Association for Computational Linguistics, 2020: 5596−5607.
|
33 |
ZHOU J, HUANG J X, HU Q V, et al SK-GCN: modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 205: 106292
doi: 10.1016/j.knosys.2020.106292
|
34 |
崔少国, 陈思奇, 杜兴 面向目标情感分析的双重图注意力网络模型[J]. 西安电子科技大学学报, 2023, 50 (1): 137- 148 CUI Shaoguo, CHEN Siqi, DU Xing Dual graph attention networks model for target sentiment analysis[J]. Journal of Xidian University, 2023, 50 (1): 137- 148
|
35 |
XIN X, WUMAIER A, KADEER Z, et al SSEMGAT: syntactic and semantic enhanced multi-layer graph attention network for aspect-level sentiment analysis[J]. Applied Sciences, 2023, 13 (8): 5085
doi: 10.3390/app13085085
|
36 |
JIANG T, WANG Z, YANG M, et al Aspect-based sentiment analysis with dependency relation weighted graph attention[J]. Information, 2023, 14 (3): 185
doi: 10.3390/info14030185
|
37 |
谷雨影, 高美凤 融合词性与外部知识的方面级情感分析[J]. 计算机科学与探索, 2013, 17 (10): 2488- 2498 GU Yuying, GAO Meifeng Aspect-level sentiment analysis combining part-of-speech and external knowledge[J]. Journal of Frontiers of Computer Science and Technology, 2013, 17 (10): 2488- 2498
|
38 |
BROWN T, MANN B, RYDER N, et al Language models are few-shot learners[J]. Advances in Neural Information Processing Systems, 2020, 33: 1877- 1901
|
39 |
OUYANG L, WU J, JIANG X, et al Training language models to follow instructions with human feedback[J]. Advances in Neural Information Processing Systems, 2022, 35: 27730- 27744
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|