计算机技术、通信技术 |
|
|
|
|
引入相量算子和流向算子的天鹰优化算法 |
周玉1( ),裴泽宣1,王培崇2,陈博1 |
1. 华北水利水电大学 电气工程学院,河南 郑州 450045 2. 河北地质大学 信息工程学院,河北 石家庄 050031 |
|
Aquila optimizer based on phasor operator and flow direction operator |
Yu ZHOU1( ),Zexuan PEI1,Peichong WANG2,Bo CHEN1 |
1. College of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China 2. College of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China |
引用本文:
周玉,裴泽宣,王培崇,陈博. 引入相量算子和流向算子的天鹰优化算法[J]. 浙江大学学报(工学版), 2024, 58(2): 304-316.
Yu ZHOU,Zexuan PEI,Peichong WANG,Bo CHEN. Aquila optimizer based on phasor operator and flow direction operator. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 304-316.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.02.009
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I2/304
|
1 |
UMER M, SADIQ S, REEMAH M, et al Face mask detection using deep convolutional neural network and multi-stage image processing[J]. Image and Vision Computing, 2023, 133 (10): 46- 57
|
2 |
TIAN J G, HAN D Y, REZA H K, et al Deep learning-based open set multi-source domain adaptation with complementary transferability metric for mechanical fault diagnosis[J]. Neural Networks, 2023, 162 (6): 69- 82
|
3 |
JESUS J, RUIZ A, URDA D, et al A freight inspection volume forecasting approach using an aggregation/disaggregation procedure, machine learning and ensemble models[J]. Neurocomputing, 2020, 391: 282- 291
doi: 10.1016/j.neucom.2019.06.109
|
4 |
LI C, BAI L, LIU W, et al A multi-task memory network with knowledge adaptation for multimodal demand forecasting[J]. Transportation Research Part C: Emerging Technologies, 2021, 131: 103352
doi: 10.1016/j.trc.2021.103352
|
5 |
GHAREHCHOPOGH F S, NAMAZI M, EBRAHIMI L, et al Advances in sparrow search algorithm: a comprehensive survey[J]. Archives of Computational Methods in Engineering, 2023, 30: 427- 455
doi: 10.1007/s11831-022-09804-w
|
6 |
MUHAMMAD Y, RAJA M A Z, ALTAF M, et al Design of fractional comprehensive learning PSO strategy for optimal power flow problems[J]. Applied Soft Computing, 2022, 130: 109638
|
7 |
XUE J, SHEN B A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8 (1): 22- 34
doi: 10.1080/21642583.2019.1708830
|
8 |
MIRJALILI S, LEWIS A The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51- 67
doi: 10.1016/j.advengsoft.2016.01.008
|
9 |
LI S N, LI W, TANG J W, et al A new evolving operator selector by using fitness landscape in differential evolution algorithm[J]. Information Sciences, 2023, 624 (8): 709- 731
|
10 |
KAHLOUL S, DJAAFAR Z, BOUALEM B, et al A multi-external archive-guided Henry gas solubility optimization algorithm for solving multi-objective optimization problems[J]. Engineering Applications of Artificial Intelligence, 2022, 109: 104588
doi: 10.1016/j.engappai.2021.104588
|
11 |
KARAMI H, VALIKHAN A M, FARZIN S Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems[J]. Computers and Industrial Engineering, 2021, 156 (4): 23- 39
|
12 |
FATEHI M, TOLORI A, ENRICO Z An advanced teaching-learning-based algorithm to solve unconstrained optimization problems[J]. Intelligent Systems with Applications, 2023, 17 (42): 53- 74
|
13 |
KUMAR M, ANADA J K, SAPATAPHY S C Socio evolution and learning optimization algorithm: a socio-inspired optimization methodology[J]. Future Generation Computer Systems, 2018, 81: 252- 272
doi: 10.1016/j.future.2017.10.052
|
14 |
MOHAMMAD H, SHAHRAKI N, TAGHIAN S, et al An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917
doi: 10.1016/j.eswa.2020.113917
|
15 |
邓志诚, 孙辉, 赵嘉, 等 方波触发勘探与开发的粒子群优化算法[J]. 自动化学报, 2022, 48 (12): 3042- 3061 DENG Zhicheng, SUN Hui, ZHAO Jia, et al Particle swarm optimization with square wave triggered exploration and exploitation[J]. Acta Automatica Sinica, 2022, 48 (12): 3042- 3061
doi: 10.16383/j.aas.c190842
|
16 |
AMIRTEIMOORI A, MAHDAVI I, SOLIMANPUR M, et al A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation[J]. Computers and Industrial Engineering, 2022, 173 (5): 125- 143
|
17 |
ABUALIGAH L, YOUSRI D, ELAZIZ M A, et al Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers and Industrial Engineering, 2021, 157 (10): 50- 72
|
18 |
GHAMEHI M, AKBARI E, RAHIMNEJAD A, et al Phasor particle swarm optimization: a simple and efficient variant of PSO[J]. Soft Computing: A Fusion of Foundations, Methodologies and Applications, 2019, 23 (19): 1701- 1718
|
19 |
BUALIGAH L, YOUSRI D, ELAZIZ M, et al Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers and Industrial Engineering, 2021, 157 (9): 157- 171
|
20 |
李玥,穆维松,褚晓泉,等 基于改进量子粒子群的K-means聚类算法及其应用[J]. 控制与决策, 2022, 37 (4): 839- 850 LI Yue, MU Weisong, CHU Xiaoquan, et al K-means clustering algorithm based on improved quantum particle swarm optimization and its application[J]. Control and Decision, 2022, 37 (4): 839- 850
|
21 |
EESA A S, HASSAN M M, ARABO W K Letter: application of optimization algorithms to engineering design problems and discrepancies in mathematical formulas[J]. Applied Soft Computing, 2023, 11 (5): 23- 64
|
22 |
HUANG F Z, WANG L, HE Q An effective co-evolutionary differential evolution for constrained optimization[J]. Applied Mathematics and Computation, 2007, 186 (1): 340- 356
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|