| 
					
						| 
								
									| 机械工程、能源工程 |  |     |  |  
    					|  |  
    					| 注意力卷积GRU自编码器及其在工业过程监控的应用 |  
						| 刘兴(  ),余建波*(  ) |  
					| 同济大学 机械与能源工程学院,上海 201804 |  
						|  |  
    					| Attention convolutional GRU-based autoencoder and its application in industrial process monitoring |  
						| Xing LIU(  ),Jian-bo YU*(  ) |  
						| School of Mechanical Engineering, Tongji University, Shanghai 201804, China |  
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | YIN S, YANG X, KARIMI H R Data-driven adaptive observer for fault diagnosis[J]. Mathematical Problems in Engineering, 2012, 2012: 832836 |  
																| 2 | XIE X, SUN W, CHEUNG K An advanced PLS approach for key performance indicator-related prediction and diagnosis in case of outliers[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (4): 2587- 2594 |  
																| 3 | YANG Q, GE S S, SUN Y Adaptive actuator fault tolerant control for uncertain nonlinear systems with multiple actuators[J]. Automatica, 2015, 60: 92- 99 doi: 10.1016/j.automatica.2015.07.006
 |  
																| 4 | WAN Z, LI J, GAO Y Monitoring and diagnosis process of abnormal consumption on smart power grid[J]. Neural Computing and Applications, 2018, 30 (1): 21- 28 doi: 10.1007/s00521-016-2719-4
 |  
																| 5 | GE Z Q Review on data-driven modeling and monitoring for plant wide industrial processes[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 16- 25 doi: 10.1016/j.chemolab.2017.09.021
 |  
																| 6 | NOR N M, HASSAN C R C, HUSSAIN M A A review of data-driven fault detection and diagnosis methods: applications in chemical process systems[J]. Reviews in Chemical Engineering, 2019, 36 (4): 513- 553 |  
																| 7 | JIANG Q, YAN X, HUANG B Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and bayesian inference[J]. IEEE Transactions on Industrial Electronics, 2015, 63 (1): 377- 386 |  
																| 8 | DENG X, TIAN X, CHEN S, et al Nonlinear process fault diagnosis based on serial principal component analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (3): 560- 572 doi: 10.1109/TNNLS.2016.2635111
 |  
																| 9 | ZHONG B, WANG J, ZHOU J, et al Quality-related statistical process monitoring method based on global and local partial least-squares projection[J]. Industrial and Engineering Chemistry Research, 2016, 55 (6): 1609- 1622 doi: 10.1021/acs.iecr.5b02559
 |  
																| 10 | YU G Fault feature extraction using independent component analysis with reference and its application on fault diagnosis of rotating machinery[J]. Neural Computing and Applications, 2015, 26 (1): 187- 198 doi: 10.1007/s00521-014-1726-6
 |  
																| 11 | ZHONG S, WEN Q, GE Z Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138: 203- 211 doi: 10.1016/j.chemolab.2014.08.008
 |  
																| 12 | LEE J M, YOO C K, CHOI S W, et al Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59 (1): 223- 234 doi: 10.1016/j.ces.2003.09.012
 |  
																| 13 | JIANG Q, YAN X Parallel PCA–KPCA for nonlinear process monitoring[J]. Control Engineering Practice, 2018, 80 (9): 17- 25 |  
																| 14 | DEWI Y N, RIANA D, MANTORO T. Improving nave bayes performance in single image pap smear using weighted principal component analysis (WPCA) [C]// 2017 International Conference on Computing, Engineering, and Design (ICCED). Jakarta: IEEE, 2018: 1-5 |  
																| 15 | WANG K, JUNG H C, ZHI S Performance analysis of dynamic PCA for closed-loop process monitoring and its improvement by output oversampling scheme[J]. IEEE Transactions on Control Systems and Technology, 2019, 27 (1): 378- 85 doi: 10.1109/TCST.2017.2765621
 |  
																| 16 | HEO S, LEE J H Fault detection and classification using artificial neural networks[J]. IFAC-PapersOnLine, 2018, 51 (18): 470- 475 doi: 10.1016/j.ifacol.2018.09.380
 |  
																| 17 | YANG C, HOU J Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine[J]. Neurocomputing, 2016, 190 (19): 117- 123 |  
																| 18 | LI Y, LIU Y, ZHANG C Discriminant diffusion maps based K-nearest-neighbour for batch process fault detection [J]. Canadian Journal of Chemical Engineering, 2018, 96 (2): 484- 496 doi: 10.1002/cjce.23003
 |  
																| 19 | KIM Y, KIM S B Optimal false alarm-controlled support vector data description for multivariate process monitoring[J]. Journal of Process Control, 2017, 65: 1- 14 |  
																| 20 | 黄健, 杨旭 基于在线加权慢特征分析的故障检测算法[J]. 上海交通大学学报, 2020, 54 (11): 1142- 1150 HUANG Jian, YANG Xu Online Weighted Based Slow Feature Analysis Fault Detection Algorithm[J]. Journal of Shanghai Jiao Tong University, 2020, 54 (11): 1142- 1150
 |  
																| 21 | HINTON, G Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313 (5786): 504- 507 doi: 10.1126/science.1127647
 |  
																| 22 | LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521 (7553): 436- 444 doi: 10.1038/nature14539
 |  
																| 23 | LIU Y, FAN Y, CHEN J Flame images for oxygen content prediction of combustion systems using DBN[J]. Energy Fuel, 2017, 31 (8): 8776- 8783 doi: 10.1021/acs.energyfuels.7b00576
 |  
																| 24 | XUAN Q, FANG BW, LIU Y, et al Automatic pearl classification machine based on a multistream convolutional neural network[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (8): 6538- 6547 doi: 10.1109/TIE.2017.2784394
 |  
																| 25 | KRIZHEVSKY A, SUTSKEVER I, HINTON G ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90 doi: 10.1145/3065386
 |  
																| 26 | ZHANG X Y, YIN F, ZHANG Y M, et al Drawing and recognizing chinese characters with recurrent neural network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 849- 862 doi: 10.1109/TPAMI.2017.2695539
 |  
																| 27 | LAULY S, LAROCHELLE H, KHAPRA M, et al An autoencoder approach to learning bilingual word representations[J]. Advances in Neural Information Processing Systems, 2014, 3: 1853- 1861 |  
																| 28 | ZHANG Z P, ZHAO J S A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers and Chemical Engineering, 2017, 107: 395- 407 doi: 10.1016/j.compchemeng.2017.02.041
 |  
																| 29 | TANG P, PENG K, ZHANG K A deep belief network-based fault detection method for nonlinear processes[J]. IFAC-PapersOnLine, 2018, 51 (24): 9- 14 doi: 10.1016/j.ifacol.2018.09.522
 |  
																| 30 | 李元, 冯成成 基于一维卷积神经网络深度学习的工业过程故障检测[J]. 测控技术, 2019, 38 (9): 36- 40 LI Yuan, FENG Cheng-cheng Fault detection of industrial process based on deep learning of one-dimensional convolution neural network[J]. Measurement and Control Technology, 2019, 38 (9): 36- 40
 |  
																| 31 | WU H, ZHAO J S Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers and Chemical Engineering, 2018, 115: 185- 197 doi: 10.1016/j.compchemeng.2018.04.009
 |  
																| 32 | ZHANG Z H, TENG J, LI S H, et al Automated feature learning for nonlinear process monitoring: an approach using stacked denoising autoencoder and k-nearest neighbor rule[J]. Journal of Process Control, 2018, 64: 49- 61 doi: 10.1016/j.jprocont.2018.02.004
 |  
																| 33 | CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Proceeding of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: [s.n.], 2014: 1724-1734. |  
																| 34 | HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780 doi: 10.1162/neco.1997.9.8.1735
 |  
																| 35 | SHI X, GAO Z, LAUSEN L. Deep learning for precipitation nowcasting: a benchmark and a new model [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: [s.n.], 2017: 5617-5627. |  
																| 36 | MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention [EB/OL]. [2020-07-24]. http://arxiv. org/pdf/1406.6247.pdf. |  
																| 37 | CHEN Q, WYNNE R J, GOULDING P, et al The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8 (5): 531- 543 doi: 10.1016/S0967-0661(99)00191-4
 |  
																| 38 | LAURENS V D M, HINTON G Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (86): 2579- 2605 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |