Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1652-1659    DOI: 10.3785/j.issn.1008-973X.2021.09.006
机械工程、能源工程     
无机灰分对餐厨沼渣中有机质热解特性的影响
王琬丽(),孙锴,黄群星*(),严建华
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Effect of inorganic ash on pyrolysis characteristics of organic matter of biogas residue from food waste
Wan-li WANG(),Kai SUN,Qun-xing HUANG*(),Jian-hua YAN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1048 KB)   HTML
摘要:

针对餐厨垃圾厌氧处理所产生的沼渣具有产量大、灰分质量分数高的特点,研究沼渣中无机灰分对其热解过程的影响. 通过热重分析和热裂解?气相色谱质谱联用技术(Py-GC/MS)分析沼渣热解动力学特性及其产物. 动力学分析结果表明,沼渣除灰后,失重速率显著提高,热解起始温度由180 ℃降至160 ℃. 除灰沼渣的总表观活化能比沼渣的略高,原因可能是除灰使沼渣内部孔隙增加,在促进挥发分析出的同时,削弱了部分组分在热解过程中的催化裂解作用. 产物分析结果表明,NaCl能够促进油相产物中烃类向酮类的转化,ZnCl2通过促进酸类的脱羧作用,使烃类质量分数提高至66.8%;Fe2O3和Al2O3使烃类物质的质量分数分别提高至66.8%和72.7%,CaO和MgO可以促进酸类脱羧生成酮,使产物中酮类的质量分数高达46.5%和39.4%.

关键词: 餐厨垃圾沼渣无机灰分热解动力学    
Abstract:

The effect of inorganic ash in biogas residue on the pyrolysis of its organic matter was studied, aiming at the biogas residue produced by anaerobic treatment of food waste has the characteristics of large yield and high ash mass fraction. The kinetics characteristics and products of pyrolysis were analyzed by thermogravimetric analysis and pyrolysis-gas chromatography/mass spectrometry technology (Py-GC/MS). Kinetic results show that the weight loss rate increases significantly, and the pyrolysis initiation temperature decreases from 180 ℃ to 160 ℃ after ash was removed. The total activation energy of the ash-removed biogas residue is slightly higher than that of the biogas residue, the possible reason is that the ash removal treatment can increase the internal pores of the biogas residue, which can promote the release of volatiles, weaken the catalytic cracking effect of the ash in the pyrolysis. According to the analysis results of pyrolysis products, the NaCl can promote the conversion of hydrocarbons to ketones, and the ZnCl2 promotes the decarboxylation of acids to produce hydrocarbons, which increased to 66.8% in the oil product. The presence of metal oxides such as Fe2O3 and Al2O3 increases the content of hydrocarbons to 66.8% and 72.7% respectively, while the CaO and MgO promote the formation of ketones through the decarboxylation of acids, which are high up to 46.5% and 39.4% respectively.

Key words: food waste    biogas residue    inorganic ash    pyrolysis    kinetics
收稿日期: 2020-08-27 出版日期: 2021-10-20
CLC:  X 705  
基金资助: 国家重点研发计划资助项目(2018YFC1901300);国家自然科学基金资助项目(51621005)
通讯作者: 黄群星     E-mail: wangwanli0112@163.com;hqx@zju.edu.cn
作者简介: 王琬丽(1991—),女,博士生,从事有机固废协同热转化研究. orcid.org/0000-0003-2873-3161. E-mail: wangwanli0112@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王琬丽
孙锴
黄群星
严建华

引用本文:

王琬丽,孙锴,黄群星,严建华. 无机灰分对餐厨沼渣中有机质热解特性的影响[J]. 浙江大学学报(工学版), 2021, 55(9): 1652-1659.

Wan-li WANG,Kai SUN,Qun-xing HUANG,Jian-hua YAN. Effect of inorganic ash on pyrolysis characteristics of organic matter of biogas residue from food waste. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1652-1659.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.006        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1652

图 1  实验用沼渣样品
样品 wB/% e/(MJ·kg?1
水分 灰分 挥发分 固定碳 C H O N S
沼渣 1.8 29.7 62.0 6.5 45.1 6.1 14.1 2.6 0.6 19.9
除灰沼渣 8.5 13.0 70.8 7.7 52.0 6.6 16.8 2.8 0.3 25.1
表 1  沼渣和除灰沼渣的工业元素热值分析
样品 wB/%
SiO2 Al2O3 MgO Fe2O3 CaO Na2O K2O 其他
沼渣 33.9 18.0 16.7 10.6 9.6 1.3 1.0 8.9
表 2  沼渣的灰成分
图 2  沼渣灰分XRD图谱
图 3  沼渣与除灰沼渣TG/DTG曲线
样品 θ/℃ E/(kJ·mol?1 A/min?1 r2
沼渣 180~365 33.75 128.01 0.99
365~525 32.93 75.14 0.96
600~675 21.36 4.71 0.95
除灰沼渣 160~280 79.87 6.76×107 0.99
280~510 11.39 2.03 0.96
表 3  沼渣与除灰沼渣热解动力学特性
图 4  沼渣与除灰沼渣热解色谱图
图 5  沼渣与除灰沼渣产物分布
图 6  不同无机氯盐对除灰沼渣热解产物的影响
图 7  不同氧化物对除灰沼渣热解产物的影响
图 8  羧酸脱羧成酮反应
1 李刚, 卢明, 吴春强, 等 上海湿垃圾沼渣特性及资源化利用探索[J]. 园林, 2020, 6: 25- 29
LI Gang, LU Ming, WU Chun-qiang, et al Research on the characteristics and resource utilization of food waste in Shanghai[J]. Landscape Architecture, 2020, 6: 25- 29
2 LI Y Y, JIN Y J, LI J H, et al Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion[J]. Energy, 2017, 118: 377- 386
doi: 10.1016/j.energy.2016.12.041
3 YANG Y Q, SHEN D S, LI N, et al Co-digestion of kitchen waste and fruit-vegetable waste by two-phase anaerobic digestion[J]. Environmental Science and Pollution Research, 2013, 20 (4): 2162- 2171
doi: 10.1007/s11356-012-1414-y
4 DING K, ZHONG Z P, ZHANG B, et al Catalytic pyrolysis of waste tire to produce valuable aromatic hydrocarbons: an analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 55- 63
doi: 10.1016/j.jaap.2016.10.023
5 LOPEZ, MARCO I D, CABALLERO B M, et al Pyrolysis of municipal plastic wastes: influence of raw material composition[J]. Waste Management, 2010, 30 (4): 620- 627
doi: 10.1016/j.wasman.2009.10.014
6 ANSAH E, WANG L J, SHAHBAZI A Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components[J]. Waste Management, 2016, 56: 196- 206
doi: 10.1016/j.wasman.2016.06.015
7 ZHENG X Y, CHEN C, YING Z, et al Py-GC/MS study on tar formation characteristics of MSW key component pyrolysis[J]. Waste and Biomass Valorization, 2017, 8 (2): 1- 7
8 GAO N B, LI J J, QI B Y, et al Thermal analysis and products distribution of dried sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 43- 48
doi: 10.1016/j.jaap.2013.10.002
9 NEUMANN J, BINDER S, APFELBACHER A, et al Production and characterization of a new quality pyrolysis oil, char and syngas from digestate: introducing the thermo-catalytic reforming process[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 137- 142
doi: 10.1016/j.jaap.2014.11.022
10 WONGROD S, SIMON S, GUIBAUD G, et al Lead sorption by biochar produced from biogas digestates: consequences of chemical modification and washing[J]. Journal of Environmental Management, 2018, 219: 277- 284
11 LIU J X, HUANG S M, CHEN K, et al Preparation of biochar from food waste digestate: pyrolysis behavior and product properties[J]. Bioresource Technology, 2020, 302: 122841
doi: 10.1016/j.biortech.2020.122841
12 JING L, HU S, SUN L S, et al Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass[J]. Bioresource Technology, 2013, 146: 254- 260
doi: 10.1016/j.biortech.2013.07.063
13 SERT M, BALLICE L, YUKSEL M, et al Effect of demineralization on product yield and composition at isothermal pyrolysis of Eynez lignites[J]. Industrial and Engineering Chemistry Research, 2011, 50 (18): 10400- 10406
doi: 10.1021/ie2008604
14 SHAO J A, YAN R, CHEN H P, et al Catalytic effect of metal oxides on pyrolysis of sewage sludge[J]. Fuel Processing Technology, 2010, 91 (9): 1113- 1118
doi: 10.1016/j.fuproc.2010.03.023
15 ELLIS N, MASNADI M S, ROBERTS D G, et al Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity[J]. Chemical Engineering Journal, 2015, 279: 402- 408
doi: 10.1016/j.cej.2015.05.057
16 RAVEENDRAN K, GANESH A, KHILAR K C Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel, 1995, 74 (12): 1812- 1822
doi: 10.1016/0016-2361(95)80013-8
17 YANG H P, YAN R, CHEN H P, et al Influence of mineral matter on pyrolysis of palm oil wastes[J]. Combustion and Flame, 2006, 146 (4): 605- 611
doi: 10.1016/j.combustflame.2006.07.006
18 王贤华, 陈汉平, 王静, 等 无机矿物质盐对生物质热解特性的影响[J]. 燃料化学学报, 2008, 36 (6): 679- 683
WANG Xian-hua, CHEN Han-ping, WANG Jing, et al Influences of mineral matters on biomass pyrolysis characteristics[J]. Journal of Fuel Chemistry and Technology, 2008, 36 (6): 679- 683
doi: 10.3969/j.issn.0253-2409.2008.06.007
19 ASADIERAGHI M, WAN DAUD W M A Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions[J]. Energy Conversion and Management, 2014, 82: 71- 82
doi: 10.1016/j.enconman.2014.03.007
20 DAS P, GANESH A, WANGIKAR P Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products[J]. Biomass and Bioenergy, 2004, 27 (5): 445- 457
doi: 10.1016/j.biombioe.2004.04.002
21 EOM I Y, KIM K H, KIM J Y, et al Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents[J]. Bioresource Technology, 2011, 102 (3): 3437- 3444
doi: 10.1016/j.biortech.2010.10.056
22 中华人民共和国原煤炭工业局. 煤的工业分析方法: GB/T 212—2001 [S]. 北京: 中国标准出版社, 2001.
23 中华人民共和国原煤炭工业局. 煤的元素分析方法: GB/T 476—2001 [S]. 北京: 中国标准出版社, 2001.
24 中国煤炭工业协会. 石油燃料/煤的发热量测定方法: GB/T 213—2003 [S]. 北京: 中国标准出版社, 2003.
25 中国煤炭工业协会. 煤灰成分分析方法: GB/T 1574-2007 [S]. 北京: 中国标准出版社, 2007.
26 ZHANG X S, LEI H W, ZHU L, et al Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics[J]. Bioresource Technology, 2016, 220: 233- 238
doi: 10.1016/j.biortech.2016.08.068
27 ZHOU L M, LUO T A, HUANG Q W Co-pyrolysis characteristics and kinetics of coal and plastic blends[J]. Energy Conversion and Management, 2009, 50 (3): 705- 710
doi: 10.1016/j.enconman.2008.10.007
28 ADAM J, BLAZSO M, MESZAROS E, et al Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts[J]. Fuel, 2005, 84 (12-13): 1494- 1502
29 LU Q, ZHANG Y, TANG Z, et al Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts[J]. Fuel, 2010, 89 (8): 2096- 2103
doi: 10.1016/j.fuel.2010.02.030
30 DONG C Q, ZHANG Z F, LU Q, et al Characteristics and mechanism study of analytical fast pyrolysis of poplar wood[J]. Energy Conversion and Management, 2012, 57: 49- 59
doi: 10.1016/j.enconman.2011.12.012
31 SUN L Z, ZHANG X D, CHEN L, et al Effect of preparation method on structure characteristics and fast pyrolysis of biomass with Fe/CaO catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2015, 116: 183- 189
doi: 10.1016/j.jaap.2015.09.011
32 孙俊. 碱金属对生物质热解气化催化作用的研究[D]. 长沙: 长沙理工大学, 2017: 42-43.
SUN Jun. Study on catalytic action of alkali metal on pyrolysis gasification of biomass [D]. Changsha: Changsha University of Science and Technology, 2017: 42-43.
33 ERWEI L, MARIO C, GONG X, et al Effects of KCl and CaCl2 on the evolution of anhydro sugars in reaction intermediates during cellulose fast pyrolysis [J]. Fuel, 2019, 251: 307- 315
doi: 10.1016/j.fuel.2019.04.006
34 ZHANG G D, YU F W, WANG W J, et al Influence of molten salts on soybean oil catalytic pyrolysis with/without a basic catalyst[J]. Energy and Fuels, 2014, 28 (1): 535- 541
doi: 10.1021/ef4015845
35 STEFANIDIS S D, KALOGIANNIS K G, ILIOPOULOU E F, et al In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor[J]. Bioresource Technology, 2011, 102 (17): 8261- 8267
doi: 10.1016/j.biortech.2011.06.032
36 DAVID E, KOPAC J Upgrading the characteristics of the bio-oil obtained from rapeseed oil cake pyrolysis through the catalytic treatment of its vapors[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104638
doi: 10.1016/j.jaap.2019.104638
37 DING K, ZHONG Z P, WANG J Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5[J]. Bioresource Technology, 2018, 261: 86- 92
doi: 10.1016/j.biortech.2018.03.138
[1] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[2] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[3] 杨亚锋,汪怡平,陈志鑫,苏建军,杨斌. 大巴车飞沫扩散特性及乘客感染风险预测[J]. 浙江大学学报(工学版), 2022, 56(1): 161-167.
[4] 李吉冬,钟莹,李醒飞. 磁流体动力学动量轮的致动特性和影响因素[J]. 浙江大学学报(工学版), 2021, 55(9): 1676-1683.
[5] 何国青,赵文杰,王亮. 城市地下综合管廊通风传热模型[J]. 浙江大学学报(工学版), 2021, 55(8): 1419-1425.
[6] 黄松兴,焦甲龙,陈超核. 方形波浪中船舶运动特性及安全航行策略[J]. 浙江大学学报(工学版), 2021, 55(8): 1473-1481.
[7] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[8] 刘桓龙,谢迟新,李大法,王家为. 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报(工学版), 2021, 55(5): 875-886.
[9] 杨华美,李靖,堵锡华. 木质素单体模化物的热解与产物分析[J]. 浙江大学学报(工学版), 2021, 55(5): 976-983.
[10] 詹志文,张凌新,邓见,邵雪明. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.
[11] 张玙,刘益才. 小型制冷系统两相流致噪声研究进展[J]. 浙江大学学报(工学版), 2021, 55(4): 775-792.
[12] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[13] 李伟达,李娟,李想,张虹淼,顾洪,史逸鹏,张浩杰,孙立宁. 欠驱动异构式下肢康复机器人动力学分析及参数优化[J]. 浙江大学学报(工学版), 2021, 55(2): 222-228.
[14] 杨延璞,龚政,兰晨昕,雷紫荆,王欣蕊. 工业设计决策网络构建及其动态演化仿真[J]. 浙江大学学报(工学版), 2021, 55(12): 2298-2306.
[15] 赵一飞,方梦祥,史勇敏,夏芝香,岑建孟. 高温热解煤气放电性能的影响因素[J]. 浙江大学学报(工学版), 2021, 55(11): 2115-2124.