Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1615-1624    DOI: 10.3785/j.issn.1008-973X.2021.09.002
机械工程、能源工程     
全钢载重子午线轮胎胎面磨耗行为研究
王洁1(),李钊1,2,李子然1,*()
1. 中国科学技术大学 近代力学系,中国科学院材料力学行为和设计重点实验室,安徽 合肥 230027
2. 武汉第二船舶设计研究所,湖北 武汉 430205
Research on tread wear behavior of all steel radial truck tire
Jie WANG1(),Zhao LI1,2,Zi-ran LI1,*()
1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
 全文: PDF(2231 KB)   HTML
摘要:

以12R22.5全钢载重子午线轮胎为研究对象,建立含纵向花纹的轮胎有限元模型,采用磨耗后处理法模拟胎面磨耗行为. 将制动条件下计算得到的沟深磨耗量与道路实测结果进行对比,两者相对误差为10.2%,验证了该处理方法的可靠性. 对4种不同行驶工况的轮胎胎面进行磨耗仿真分析. 结果表明,自由滚动工况磨耗主要发生在花纹沟边,制动工况胎肩部花纹块磨耗深度较大,驱动工况磨耗主要发生在胎中部花纹块,侧偏工况胎面橡胶磨耗速率最快. 考察充气压力和载荷对胎面磨耗的影响. 结果表明,载荷增大、充气压力减小使胎面磨耗的不均匀性增加. 对于超压超载工况,仿真得出自由滚动5×104 km后胎面橡胶磨耗质量是额定工况的1.56倍.

关键词: 全钢载重子午线轮胎道路磨耗试验行驶工况超压超载工况有限元分析    
Abstract:

The tire tread wear behavior was simulated through a wear post processing method, based on the finite element model of 12R22.5 all steel truck radial tire with longitudinal patterns. Comparing the calculated results of groove depth with the road wear test results under braking conditions, the relative error of the two is 10.2% which shows the reliability of the method. The tire tread wear in four different conditions was analyzed. Results show that the tire wear in free rolling conditions mainly occurs on the side of grooves. The maximum wear depth appears in the shoulder block under braking conditions, while the maximum wear depth of driving conditions appears in the middle block of the tread. The tread wear rate under cornering conditions is the greatest. The influence of inflation pressure and load on tread wear was investigated. The lower inflation pressure and the higher load lead to the increased unevenness of tread wear profile. Numerical results show that the quality of rubber wear in the overpressure-overload condition is 1.56 times that of the rated inflation and load condition after 5×104 km of free rolling.

Key words: all steel radial truck tire    road wear test    rolling condition    overpressure-overload condition    finite element analysis
收稿日期: 2020-09-28 出版日期: 2021-10-20
CLC:  TB 115  
基金资助: 中国科学院战略性先导科技专项(C类)(XDC06030200);国家自然科学基金资助项目(11902229)
通讯作者: 李子然     E-mail: wj9@mail.ustc.edu.cn;lzr@ustc.edu.cn
作者简介: 王洁(1997―),女,硕士生,从事计算结构力学研究. orcid.org/0000-0001-7709-973X. E-mail: wj9@mail.ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王洁
李钊
李子然

引用本文:

王洁,李钊,李子然. 全钢载重子午线轮胎胎面磨耗行为研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1615-1624.

Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.002        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1615

图 1  12R22.5全钢载重子午胎二维有限元模型
图 2  轮胎与路面的整体有限元模型
图 3  轮胎下沉量的试验与仿真结果对比
状态 D/mm B/mm S/cm2
试验 1 083.00 295.00 487.44
仿真 1 084.30 293.11 501.94
表 1  轮胎模型的仿真与试验结果比较
图 4  轮胎接地印痕对比
图 5  60目刚玉盘上橡胶轮摩擦系数测试结果
图 6  60目刚玉盘上胎面胶摩擦系数拟合曲面
测试工况 F/N α/(°) Vd/(km·h?1) Ld/m
1 75 5.5 6 100 0
2 75 5.5 20 170 0
3 75 9 6 300
4 75 9 20 400
5 75 16 6 100
6 75 16 20 170
表 2  胎面胶磨耗试验方案
图 7  胎面胶磨耗速率拟合结果
图 8  胎面节点i所在的微元
图 9  胎面节点i的磨耗方向
图 10  胎面磨耗求解计算流程
图 11  轮胎的沟深磨耗量
工况 FN/N P/MPa V/(km·h?1) s/% β/(°) L/104 km
自由滚动 19 600 0.93 80 0 0 5.00
制动 19 600 0.93 80 1 0 0.30
驱动 19 600 0.93 80 1 0 0.30
侧偏 19 600 0.93 80 0 1 0.08
表 3  12R22.5全钢载重子午胎在4种行驶工况下的参数
图 12  4种行驶工况下胎面磨耗轮廓演化
图 13  4种工况下各步长内轮胎磨耗距离
图 14  4种工况下胎面磨耗对比
图 15  不同充气压力下胎面磨耗轮廓对比
图 16  不同充气压力下轮胎接地压力对比
图 17  不同载荷下胎面磨耗轮廓对比
图 18  不同载荷下轮胎接地压力对比
图 19  超压超载与额定压力荷载工况胎面磨耗轮廓对比
图 20  超压超载与额定压力荷载下接地压力对比
图 21  超压超载与额定压力荷载工况下胎面橡胶磨耗质量对比
1 GENT A N, WALTER J D. The pneumatic tire [M]. Washington, D C: National Highway Traffic Safety Administration, 2005.
2 SOUTHERN E Rapid tire wear measurements using a two-wheeled trailer[J]. Tire Science and Technology, 1973, 1 (1): 3- 16
doi: 10.2346/1.2167154
3 HUEMER T, LIU W N, EBERHARDSTEINER J A 3D finite element formulation describing the friction behavior of rubber on ice and concrete surface[J]. Engineering Computations, 2001, 18 (3/4): 417- 437
doi: 10.1108/02644400110387109
4 DORSCH V, BECKER A, VOSSEN L Enhanced rubber friction model for finite element simulations of rolling tyres[J]. Plastics, Rubber and Composites, 2002, 31 (10): 458- 464
doi: 10.1179/146580102225006486
5 ZHENG D Prediction of tire tread wear with FEM steady state rolling contact simulation[J]. Tire Science and Technology, 2003, 31 (3): 189- 202
doi: 10.2346/1.2135268
6 SMITH K R, KENNEDY R H, KNISLEY S B Prediction of tire profile wear by steady-state FEM[J]. Tire Science and Technology, 2008, 36 (4): 290- 303
doi: 10.2346/1.2999703
7 王国林, 王晨, 张建, 等 基于有限元分析的轮胎磨损性能优化[J]. 汽车工程, 2009, 31 (9): 867- 870
WANG Guo-lin, WANG Chen, ZHANG Jian, et al Tire wear performance optimization based on finite element analysis[J]. Automotive Engineering, 2009, 31 (9): 867- 870
doi: 10.3321/j.issn:1000-680X.2009.09.016
8 许顺凯, 臧孟炎, 周涛 基于几何更新方法的轮胎胎面磨耗行为分析[J]. 机械设计与制造工程, 2018, 47 (3): 86- 90
XU Shun-kai, ZANG Meng-yan, ZHOU Tao Analysis of tire tread wear behavior based on updated geometry method[J]. Machine Design and Manufacturing Engineering, 2018, 47 (3): 86- 90
doi: 10.3969/j.issn.2095-509X.2018.03.017
9 何涛, 李子然, 汪洋 子午线轮胎胎面花纹块滑动磨损有限元分析[J]. 工程力学, 2010, 27 (7): 237- 243
HE Tao, LI Zi-ran, WANG Yang Finite element analysis for sliding abrasion of tread blocks of radial tire[J]. Engineering Mechanics, 2010, 27 (7): 237- 243
10 吴健, 王泽君, 王友善, 等 基于摩擦功的全钢载重子午线轮胎的磨耗性能研究[J]. 橡胶工业, 2013, 60 (2): 80- 84
WU Jian, WANG Ze-jun, WANG You-shan, et al Study on wear property of truck and bus radial tire based on friction power[J]. Rubber Industry, 2013, 60 (2): 80- 84
doi: 10.3969/j.issn.1000-890X.2013.02.003
11 CHO J R, CHOI J H, KIM Y S Abrasive wear amount estimate for 3D patterned tire utilizing frictional dynamic rolling analysis[J]. Tribology International, 2011, 44 (7): 850- 858
12 JIN C, HOU C, JIN X FE simulation of tire wear with complicated tread pattern[J]. Procedia Engineering, 2011, 15: 5015- 5019
doi: 10.1016/j.proeng.2011.08.932
13 MUKRAS S, KIM N H, SAWYER W G, et al Numerical integration schemes and parallel computation for wear prediction using finite element method[J]. Wear, 2009, 266 (7-8): 822- 831
doi: 10.1016/j.wear.2008.12.016
14 LI Z, LI Z, WANG Y An integrated approach for friction and wear simulation of tire tread rubber. Part I: friction test, characterization and modeling[J]. Tire Science and Technology, 2020, 48 (2): 123- 145
doi: 10.2346/tire.19.170174
15 LI Z, LI Z, WANG Y An integrated approach for friction and wear simulation of tire tread rubber. Part II: wear test, characterization and modeling[J]. Tire Science and Technology, 2020, 48 (2): 146- 165
doi: 10.2346/tire.19.170175
16 黄文元, 王旭东, 刘瀚飚, 等 公路货运超载运输现状及对策的建议[J]. 公路交通科技, 2003, 20 (2): 148- 152
HUANG Wen-yuan, WANG Xu-dong, LIU Han-biao, et al Overloaded trucking in China and countermeasures[J]. Journal of Highway and Transportation Research and Development, 2003, 20 (2): 148- 152
doi: 10.3969/j.issn.1002-0268.2003.04.039
17 YEOH O H Some forms of the strain energy function for rubber[J]. Rubber Chemistry and Technology, 1993, 66 (5): 754- 771
doi: 10.5254/1.3538343
18 夏勇, 李炜, 夏春光 自动网格法在轮胎橡胶力学行为测试中的应用[J]. 实验力学, 2002, 17 (4): 412- 418
XIA Yong, LI Wei, XIA Chun-guang Application of automated grid method in the mechanical-behavior testing of tire rubber[J]. Journal of Experimental Mechanics, 2002, 17 (4): 412- 418
doi: 10.3969/j.issn.1001-4888.2002.04.004
19 ABAQUS Inc. ABAQUS Analysis User's Manual Version 6.14 [M]. Providence, RI: Dassault Systèmes Simulia Corp, 2014.
20 PERSSON B N J On the theory of rubber friction[J]. Surface Science, 1999, 401 (3): 445- 454
21 KLUPPEL M, HEINRICH G Rubber friction on self-affine road tracks[J]. Rubber Chemistry and Technology, 2000, 7 (4): 578- 605
22 李钊, 李子然, 夏源明 滚动轮胎接触摩擦行为的实验研究与数值分析[J]. 上海交通大学学报, 2013, 47 (5): 817- 821
LI Zhao, LI Zi-ran, XIA Yuan-ming Experimental and numerical study of frictional contact behavior of rolling tire[J]. Journal of Shanghai Jiao Tong University, 2013, 47 (5): 817- 821
23 LUPKER H, CHELI F, BRAGHIN F, et al Numerical prediction of car tire wear[J]. Tire Science and Technology, 2004, 32 (3): 164- 186
doi: 10.2346/1.2186780
24 李钊. 轮胎胎面磨耗行为的实验研究与数值分析[D]. 合肥: 中国科学技术大学, 2013.
LI Zhao. Experimental and numerical study on tire tread wear behavior [D]. Hefei: University of Science and Tecnology of China, 2013.
25 XIE L J, SCHMIDT J, SCHMIDT C, et al 2D FEM estimate of tool wear in turning operation[J]. Wear, 2005, 258 (10): 1479- 1490
doi: 10.1016/j.wear.2004.11.004
26 尹海山. 轮胎磨耗及其温度场的理论与实验研究[D]. 青岛: 青岛科技大学, 2017.
YIN Hai-shan. Theoretical and experimental study on tire wear and temperature field [D]. Qingdao: Qingdao University of Science and Technology, 2017.
[1] 曾星宇,李俊阳,王家序,唐挺,李聪. 基于有限元法的谐波双圆弧齿廓设计和修形[J]. 浙江大学学报(工学版), 2021, 55(8): 1548-1557.
[2] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[3] 黄铭枫,魏歆蕊,叶何凯,叶建云,楼文娟. 大跨越钢管塔双平臂抱杆的风致响应[J]. 浙江大学学报(工学版), 2021, 55(7): 1351-1360.
[4] 蒋君侠,廖海鹏. 重载智能堆垛装备刚度建模与结构优化[J]. 浙江大学学报(工学版), 2021, 55(10): 1948-1959.
[5] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[6] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[7] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[8] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[9] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[10] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646.
[11] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.
[12] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[13] 庄妍, 程欣婷, 肖衡林, 刘奂孜, 周倍合, 李嘉俊. 桩承式路堤中加筋褥垫层的工作性状[J]. 浙江大学学报(工学版), 2018, 52(12): 2279-2284.
[14] 夏永强, 肖南. T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报(工学版), 2018, 52(10): 1935-1942.
[15] 王幸, 徐武, 张晓晶, 张丽娜, 胡本润. TC4板冷挤压强化寿命预测与试验验证[J]. 浙江大学学报(工学版), 2017, 51(8): 1610-1618.