Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1607-1614    DOI: 10.3785/j.issn.1008-973X.2021.09.001
机械工程、能源工程     
基于激光传感器的槽型轨轮廓匹配方法
伍川辉1(),廖家1,熊仕勇1,牛英杰1,周博2
1. 西南交通大学 机械工程学院,四川 成都 610031
2. 中车长春轨道客车股份有限公司,吉林 长春 130062
Contour matching method of groove track based on laser sensor
Chuan-hui WU1(),Jia LIAO1,Shi-yong XIONG1,Ying-jie NIU1,Bo ZHOU2
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. CRRC Changchun Railway Vehicles Limited Company, Changchun 130062, China
 全文: PDF(1431 KB)   HTML
摘要:

为了实时掌握有轨电车线路的轨道状态,以期更有效地指导线路运营维护,针对有轨电车特殊的轨道结构和安装方式带来的轨道轮廓匹配困难问题,提出适用于槽型轨的轮廓匹配算法. 通过分析轨道的磨损规律及结构特征,定义槽型轨的匹配基准区域,给出区域的自动分割方法. 为了解决匹配区域定位困难的问题,设计两段式最近点迭代(ICP)匹配算法,实现轮廓的精确匹配;通过卡尔曼滤波器对匹配得到的旋转平移参数进行连续预测,解决在特殊情况下的异常匹配问题;通过实际线路实验,验证算法的可靠性. 实验结果表明:所提匹配算法具有快速、高精度和高鲁棒性的特点,能有效克服槽型轨的特殊结构和嵌入式安装方式带来的匹配困难问题.

关键词: 槽型轨断面轮廓动态匹配匹配基准区域最近点迭代(ICP)卡尔曼滤波器    
Abstract:

Aiming at the difficulty of matching the special track structure and installation mode of the tram, a contour matching algorithm for embedded trough track was presented, in order to grasp the track status of tram lines in real time, and guide the line operation and maintenance more effectively. By analyzing the wear law and structural characteristics of the track, the matching reference area of the slotted rail was defined, and a automatic segmentation method of the region was presented. In order to solve the problem of the matching region locating, a two-step iterative closest point (ICP) matching algorithm was designed, which realized the exact matching of contour. The Kalman filter was used to predict the rotation and translation parameters to solve the problem of abnormal matching in special cases. The reliability of the algorithm was verified by actual line experiments. Experimental results show that the algorithm is fast, accurate and robust, and it can effectively overcome the matching difficulties caused by the special structure and embedded installation of groove rail.

Key words: groove rail profile    dynamic matching    matched reference region    iterative closest point (ICP)    Kalman filter
收稿日期: 2020-07-23 出版日期: 2021-10-20
CLC:  U 213.2  
基金资助: 国家重点研发计划资助项目(2018YFB1201605);四川省科技计划资助项目(2019JDRC0024)
作者简介: 伍川辉(1964—),男,副教授,从事检测技术及故障诊断技术研究. orcid.org/0000-0002-1447-7796. E-mail: chwu126@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
伍川辉
廖家
熊仕勇
牛英杰
周博

引用本文:

伍川辉,廖家,熊仕勇,牛英杰,周博. 基于激光传感器的槽型轨轮廓匹配方法[J]. 浙江大学学报(工学版), 2021, 55(9): 1607-1614.

Chuan-hui WU,Jia LIAO,Shi-yong XIONG,Ying-jie NIU,Bo ZHOU. Contour matching method of groove track based on laser sensor. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1607-1614.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.001        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1607

图 1  激光位移传感器内部结构示意图
图 2  轨道廓形检测方式示意图
图 3  轨道几何参数检测系统结构简图
图 4  原始廓形点云数据
图 5  传感器坐标系与轨道基准坐标系的相对位置
图 6  槽型轨结构及嵌入式安装方式
图 7  实测点云数据及其分段
图 8  粗匹配结果及基准区域分割
图 9  正常廓形与含杂物廓形的CE斜率曲线对比
图 10  磨损轮廓数据及其粗匹配结果
图 11  匹配基准区域分割结果
图 12  近似曲率参数示意图
图 13  最终匹配结果
图 14  轨道几何参数检测系统安装位置
图 15  轨距偏差值动态检测结果
$K$/m ${d_{\rm{m}}}$/mm ${d_{\rm{d}}}$/mm $\varepsilon $/mm
K23+225 0.7 0.603 7 ?0.096 4
K23+250 0.3 0.329 6 0.029 6
K23+275 ?0.1 ?0.156 4 ?0.056 4
K23+300 0.5 0.395 5 ?0.104 5
K23+325 ?0.2 ?0.160 3 0.039 7
K23+350 0.3 0.465 5 0.165 5
K23+375 ?0.1 ?0.161 4 ?0.061 4
K23+400 ?0.3 ?0.335 5 ?0.035 5
K23+425 0.1 0.161 3 0.061 3
K23+450 0.2 0.302 2 0.102 2
表 1  动态检测与人工检测实验结果对比
图 16  轮轨接触末端点的卡尔曼滤波效果
图 17  卡尔曼滤波在异常匹配时的修正效果
1 赵昕, 顾保南 2018年中国城市轨道交通运营线路统计和分析[J]. 城市轨道交通研究, 2019, 22 (1): 1- 7
ZHAO Xin, GU Bao-nan Statistical analysis of urban rail transit lines in 2018 China[J]. Urban Mass Transit, 2019, 22 (1): 1- 7
2 张俊. 槽型轨磨耗检测研究[D]. 成都: 西南交通大学, 2016.
ZHANG Jun. The study of channel rail wear detection[D]. Chengdu: Southwest Jiaotong University, 2016.
3 ALIPPI C, CASSGRANDE E, SCOTTIE F, et al Composite real-time processing for railways track profile measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49 (3): 559- 564
doi: 10.1109/19.850395
4 POPOV D V, PYABICHENKO P B, KRIVOSHEINA E A. Calibration of the CCD photonic measuring system for railway inspection[C]// Proceeding of SPIE-The International Society for Optical Engineering. Bellingham: SPIE, 2005: 1-9.
5 LIU Z, SUN J H, WANG H, et al Simple and fast rail wear measurement method based on structured light[J]. Optics and Lasers in Engineering, 2011, 49 (11): 1343- 1351
doi: 10.1016/j.optlaseng.2011.05.014
6 SUN J H, LIU Z, ZHAO Y T, et al Motion deviation rectifying method of dynamically measuring rail wear based on multi-line structured-light vision[J]. Optics and Laser Technology, 2013, 50 (9): 25- 32
7 李艳福, 刘宏立, 马子骥, 等 基于动态参考的钢轨轮廓失真校准方法[J]. 铁道学报, 2018, 40 (10): 119- 127
LI Yan-fu, LIU Hong-li, MA Zi-ji, et al A distortion calibration method of rail profile based on dynamic reference[J]. Journal of the China Railway Society, 2018, 40 (10): 119- 127
doi: 10.3969/j.issn.1001-8360.2018.10.017
8 LI Y F, ZHONG X Y, MA Z J, et al The outlier and integrity detection of rail profile based on profile registration[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (3): 1074- 1085
doi: 10.1109/TITS.2019.2901633
9 冯凯, 于龙, 占栋, 等 钢轨轮廓全断面检测中的快速高鲁棒性匹配方法研究[J]. 铁道学报, 2019, 41 (5): 162- 167
FENG Kai, YU Long, ZHAN Dong, et al Research on fast and robust matching algorithm in inspection of full cross-section rail profile[J]. Journal of the China Railway Society, 2019, 41 (5): 162- 167
doi: 10.3969/j.issn.1001-8360.2019.05.020
10 陆英杰, 朱洪涛 基于动态时间规整的钢轨轨廓匹配方法[J]. 振动与冲击, 2019, 38 (20): 210- 215
LU Ying-jie, ZHU Hong-tao A rail profile matching method based on dynamic time warping[J]. Journal of Vibration and Shock, 2019, 38 (20): 210- 215
11 YANG Q, LIN J H. Track gauge dynamic measurement based on 2d laser displacement sensor[C]// International Conference on Mechanic Automation and Control Engineering. Hohhot: IEEE, 2011: 5473-5476.
12 史红梅, 许明, 余祖俊 基于最小二乘法曲线拟合的轨距参数测量方法[J]. 铁道学报, 2019, 41 (12): 81- 88
SHI Hong-mei, XU Ming, YU Zu-jun Track gauge measurement method based on least-square curve fitting theory[J]. Journal of the China Railway Society, 2019, 41 (12): 81- 88
doi: 10.3969/j.issn.1001-8360.2019.12.011
13 熊仕勇, 陈春俊, 王锋, 等 基于激光摄像式传感器的轨底坡动态检测方法研究[J]. 振动与冲击, 2018, 37 (18): 251- 256
XIONG Shi-yong, CHEN Chun-jun, WANG Feng, et al Dynamic detection method for rail cants based on laser camera transducers[J]. Journal of Vibration and Shock, 2018, 37 (18): 251- 256
14 杨新文, 刘小山, 沈剑罡, 等 现代有轨电车线路轨底坡对槽型轨磨耗的影响[J]. 同济大学学报: 自然科学版, 2019, 47 (4): 528- 534
YANG Xin-wen, LIU Xiao-shan, SHEN Jian-gang, et al Effect of rail cant on groove shaped rail wear in modern tram line[J]. Journal of Tongji University: Natural Science, 2019, 47 (4): 528- 534
15 王晓嘉, 高隽, 王磊 激光三角法综述[J]. 仪器仪表学报, 2004, 25 (Suppl. 2): 601- 604
WANG Xiao-jia, GAO Jun, WANG Lei Survey on the Laser tri- angulation[J]. Chinese Journal of Scientific Instrument, 2004, 25 (Suppl. 2): 601- 604
16 TANG W B, LONG Y H, XIE Y J, et al. A channel rail gauge detection system of modern tram[C]// International Conference on Networking, Sensing and Control (ICNSC). Zhuhai: IEEE, 2018: 1-5.
17 杨阳, 李芾, 张茂松, 等 槽型轨磨耗演变过程数值模拟[J]. 铁道科学与工程学报, 2016, 13 (8): 1607- 1612
YANG Yang, LI Fu, ZHANG Mao-song, et al Numerical simulation of groove track wear evolution[J]. Journal of Railway Science and Engineering, 2016, 13 (8): 1607- 1612
doi: 10.3969/j.issn.1672-7029.2016.08.023
18 汤鹏. 槽型轨磨耗焊补修复关键技术研究[D]成都. 西南交通大学, 2018.
TANG Peng. Research on key technologies of welding repair of groove rail[D]. Chengdu: Southwest Jiaotong University, 2018.
19 张兵舰, 沈钢 槽型轨与车轮接触几何关系初步研究[J]. 铁道车辆, 2006, 44 (12): 1- 3
ZHANG Jun-jian, SHEN Gang Initial research on the geometrical relation of contact between channel rail and wheels[J]. Rolling Stock, 2006, 44 (12): 1- 3
doi: 10.3969/j.issn.1002-7602.2006.12.001
[1] 王思鹏,杜昌平,宋广华,郑耀. 基于改进MSCKF的无人机室内定位方法[J]. 浙江大学学报(工学版), 2022, 56(4): 711-717.
[2] 朱光明, 蒋荣欣, 周凡, 田翔, 陈耀武. 带测量偏置估计的鲁棒卡尔曼滤波算法[J]. 浙江大学学报(工学版), 2015, 49(7): 1343-1349.
[3] 陆国生,李立言,赵民建. 全球导航卫星系统矢量载波环的设计与分析[J]. 浙江大学学报(工学版), 2015, 49(1): 20-26.
[4] 孟捷 ,刘华锋 ,岳茂雄 ,胡红杰. 生物力学模型导引的心肌运动与材料参数对偶估计[J]. J4, 2012, 46(5): 912-917.
[5] 徐亚钦, 翟国庆, 黄旋旋, 朱补全, 沈杭锋. 基于TREC法以多重动态区域反演风场[J]. J4, 2011, 45(10): 1738-1745.
[6] 陈少斌, 蒋静坪. 四轮移动机器人轨迹跟踪的最优状态反馈控制[J]. J4, 2009, 43(12): 2186-2190.