Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (12): 2495-2505    DOI: 10.3785/j.issn.1008-973X.2025.12.004
电子与通信工程     
融合Tsallis熵和波动分散熵的肌肉疲劳表征方法
董博(),吕东澔*(),奚柯阳,李佳豪
内蒙古科技大学 自动化与电气工程学院,内蒙古自治区 包头 014010
Muscle fatigue characterization method based on Tsallis entropy and fluctuation-based dispersion entropy
Bo DONG(),Donghao LV*(),Keyang XI,Jiahao LI
School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
 全文: PDF(1548 KB)   HTML
摘要:

针对目前表面肌电(sEMG)信号在肌肉疲劳识别中存在特征提取信息丢失、灵敏性不足的问题,进而影响分类精度的问题,提出基于Tsallis熵和波动分散熵(FDE)的平滑增强精细复合多尺度Tsallis波动分散熵(RCMTFDE). 该算法通过引入模糊隶属函数,解决了FDE在离散分类中影响sEMG信号连续性的问题,并结合Tsallis熵提升了FDE对非线性复杂系统的灵敏性. 考虑到单一时间尺度分析难以准确表征信号的问题,提出平滑增强的粗粒化方法,来减少粗粒化过程中信号信息泄露和熵值不稳定性,在多尺度下提取出最佳肌肉疲劳特征. 实验结果表明,RCMTFDE在区分非疲劳和疲劳信号时,展示了显著的熵值差异,且在肌肉疲劳量化曲线中表现出明显的疲劳梯度特征. 相较对比算法,该方法在肌肉疲劳分类中取得最高准确率,达到了96.667%.

关键词: 肌肉疲劳表面肌电信号波动分散熵Tsallis熵多尺度分析    
Abstract:

To address the issues of information loss and insufficient sensitivity in the feature extraction of surface electromyography (sEMG) signals, which resulted in low classification accuracy, a smooth enhanced refined composite multiscale Tsallis fluctuation-based dispersion entropy (RCMTFDE) was proposed based on Tsallis entropy and fluctuation-based dispersion entropy (FDE). The issue of discontinuity in sEMG signals caused by FDE in discrete classification was addressed by introducing a fuzzy membership function. Additionally, Tsallis entropy was combined with FDE to enhance its sensitivity to nonlinear complex systems. Considering that single time-scale analysis could not accurately characterize the signals, a smooth enhanced coarse-graining method was proposed. Signal information leakage and entropy instability during the coarse-graining process were reduced, allowing the extraction of optimal muscle fatigue features across multiple scales. Experimental results showed that RCMTFDE demonstrated significant entropy value differences when distinguishing between non-fatigue and fatigue signals, and exhibited clear fatigue gradient characteristics in the muscle fatigue quantification curve. Compared to the reference algorithms, the proposed method achieved the highest accuracy in muscle fatigue classification, reaching 96.667%.

Key words: muscle fatigue    surface electromyography signal    fluctuation-based dispersion entropy    Tsallis entropy    multiscale analysis
收稿日期: 2024-12-08 出版日期: 2025-11-25
CLC:  TN 911.7  
基金资助: 内蒙古自治区自然科学基金资助项目(2024MS06024);内蒙古自治区一流学科科研专项项目(YLXKZX-NKD-020);内蒙古自治区直属高校基本科研业务费资助项目(2023QNJS194).
通讯作者: 吕东澔     E-mail: 2023023236@stu.imust.edu.cn;wsldh2016957@imust.edu.cn
作者简介: 董博(2000—),男,硕士生,从事生物电信号处理研究. orcid.org/0009-0008-4780-4459. E-mail:2023023236@stu.imust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
董博
吕东澔
奚柯阳
李佳豪

引用本文:

董博,吕东澔,奚柯阳,李佳豪. 融合Tsallis熵和波动分散熵的肌肉疲劳表征方法[J]. 浙江大学学报(工学版), 2025, 59(12): 2495-2505.

Bo DONG,Donghao LV,Keyang XI,Jiahao LI. Muscle fatigue characterization method based on Tsallis entropy and fluctuation-based dispersion entropy. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2495-2505.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.004        https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2495

图 1  粗粒化方法对比
图 2  指标随q变化的均值分布
图 3  不同噪声长度下不同熵算法结果分布情况
图 4  不同噪声下不同熵方法的误差条图
图 5  不同尺度因子和长度下的非疲劳和疲劳信号下的熵值对比
图 6  受试者1分析结果
受试者|K|/10?3R2
RCMDERCMFDETSMFDER2CMSERTSMSIERCMTFDERCMDERCMFDETSMFDER2CMSERTSMSIERCMTFDE
10.96241.02550.97004.77041.865211.46900.84870.56020.60750.76760.18270.8566
20.58620.40900.48542.81950.99405.29320.88740.62540.69300.87880.24020.8711
30.36990.31700.33231.66280.27133.76010.78400.47750.34320.57440.03610.7991
40.64340.78710.59003.13871.46226.29980.89960.72620.61820.83290.29290.8428
50.51080.44390.46061.87340.85414.34470.87460.50630.54600.64320.03310.7673
60.44810.84730.64430.88310.80966.01610.41260.35990.32430.11940.12340.5366
71.36970.96780.87736.20220.713914.9780.76530.55040.47270.76930.09670.7742
81.06340.88370.73915.49861.94199.17810.92880.51040.49070.90700.32690.8417
90.38670.44850.35001.98301.12163.05210.43420.33580.22700.38720.07710.4359
100.55080.67951.18013.43380.77405.51580.76910.37860.53240.83410.06780.6282
111.03871.04880.77234.64520.45199.14450.80460.38630.41880.89450.01430.8987
120.65130.78860.66793.45411.66735.75860.83180.23940.29620.84950.26710.8481
130.85481.06581.57036.02391.28007.14240.87040.46710.58310.69100.11050.8640
140.97230.97231.02524.72241.290010.0310.83710.59730.55630.88410.16790.9365
150.36950.56910.36333.42100.48374.19250.55510.21400.19640.66760.01110.6118
平均值0.71850.75020.73523.63541.06537.07830.76680.46230.46030.71330.13650.7675
标准差0.29590.24740.33441.63850.49643.17500.15900.13830.14690.21080.10120.1413
表 1  各受试者肌肉疲劳量化结果
Mann-Kendall参数pz
R2CMSE0.0107?4.8979
RCMDE0.0023?5.3644
RCMFDE0.0059?3.7651
RTSMSIE?1.19390.2324
TSMFDE0.0031?3.7890
RCMTFDE0.0001?5.5373
表 2  Mann-Kendall趋势检验结果
特征分类器Sen/%Spe/%Pre/%F1/%A/%
iEMGSVM68.88967.77868.71068.30068.333
MFSVM66.88981.33381.27671.20474.111
RCMDESVM86.22286.00086.63685.82186.111
RCMFDESVM83.33389.77890.45286.00186.556
TSMFDESVM85.55689.55689.8987.13687.556
R2CMSESVM88.44490.88991.82389.31989.667
RTSMSIESVM71.77862.22266.37368.32767.000
RCMTFDESVM98.66794.66795.28796.80096.667
表 3  不同特征肌肉疲劳分类结果
图 7  肌肉疲劳分类实验中各方法的ROC曲线对比结果
算法FDE模糊化Tsallis熵传统粗粒化平滑增强粗粒化|K|/10?3R2
FDE××××0.18790.5796
模糊化FDE×××0.50070.7361
未模糊化TFDE×××2.74600.7579
模糊化TFDE××3.82110.7607
传统粗粒化RCMTFDE×6.08540.7850
平滑增强RCMTFDE6.23340.8274
表 4  RCMTFDE算法的消融实验结果
1 GUO H, GONG P, WANG Y, et al Complex network properties analysis of muscle fatigue based on sEMG signals[J]. IEEE Sensors Journal, 2023, 23 (4): 3859- 3869
doi: 10.1109/JSEN.2022.3233047
2 CÈ E, LONGO S, LIMONTA E, et al Peripheral fatigue: new mechanistic insights from recent technologies[J]. European Journal of Applied Physiology, 2020, 120 (1): 17- 39
doi: 10.1007/s00421-019-04264-w
3 LIU Q, LIU Y, ZHANG C, et al sEMG-based dynamic muscle fatigue classification using SVM with improved whale optimization algorithm[J]. IEEE Internet of Things Journal, 2021, 8 (23): 16835- 16844
doi: 10.1109/JIOT.2021.3056126
4 ZHANG Y, CHEN S, CAO W, et al MFFNet: multi-dimensional feature fusion network based on attention mechanism for sEMG analysis to detect muscle fatigue[J]. Expert Systems with Applications, 2021, 185: 115639
doi: 10.1016/j.eswa.2021.115639
5 姚贺龙, 吕东澔, 张勇, 等 基于傅里叶分解方法的肌肉疲劳状态分类研究[J]. 电子测量与仪器学报, 2023, 37 (6): 48- 58
YAO Helong, LYU Donghao, ZHANG Yong, et al Study of muscle fatigue state classification based on Fourier decomposition method[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37 (6): 48- 58
6 何恺伦, 吕健, 李林, 等 基于表面肌电与步态的外骨骼穿戴疲劳评测[J]. 浙江大学学报: 工学版, 2023, 57 (10): 2077- 2085
HE Kailun, LV Jian, LI Lin, et al Evaluation of exoskeleton wearing fatigue based on surface electromyography and gait[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (10): 2077- 2085
7 BIRNBAUM S, SHARSHAR T, ROPERS J, et al Neuromuscular fatigue in autoimmune myasthenia gravis: a cross-sectional study[J]. Neurophysiologie Clinique, 2023, 53 (4): 102844
doi: 10.1016/j.neucli.2023.102844
8 SHANKHWAR V, SINGH D, DEEPAK K K Characterization of electromyographical signals from biceps and rectus femoris muscles to evaluate the performance of squats coupled with countermeasure gravitational load modulating bodygear[J]. Microgravity Science and Technology, 2021, 33 (4): 49
doi: 10.1007/s12217-021-09899-z
9 SAMANN F, HUBICH F, OTT T, et al Muscle fatigue detection based on sEMG signal using autocorrelation function and neural networks[J]. At-Automatisierungstechnik, 2024, 72 (5): 408- 416
doi: 10.1515/auto-2023-0207
10 YU J, ZHANG L, DU Y, et al Exploration and application of a muscle fatigue assessment model based on NMF for multi-muscle synergistic movements[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 1725- 1734
doi: 10.1109/TNSRE.2024.3393132
11 HU W W, HUANG Y C, LI C P Improved algorithm of muscle fatigue detection using linear regression analysis[J]. Electronics Letters, 2013, 49 (2): 89- 91
doi: 10.1049/el.2012.2316
12 XIE H, WANG Z Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis[J]. Computer Methods and Programs in Biomedicine, 2006, 82 (2): 114- 120
doi: 10.1016/j.cmpb.2006.02.009
13 XIE H B, GUO J Y, ZHENG Y P Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals[J]. Annals of Biomedical Engineering, 2010, 38 (4): 1483- 1496
doi: 10.1007/s10439-010-9933-5
14 GONZÁLEZ-IZAL M, MALANDA A, GOROSTIAGA E, et al Electromyographic models to assess muscle fatigue[J]. Journal of Electromyography and Kinesiology, 2012, 22 (4): 501- 512
doi: 10.1016/j.jelekin.2012.02.019
15 MURILLO-ESCOBAR J, JARAMILLO-MUNERA Y E, ORREGO-METAUTE D A, et al Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy[J]. Mathematical Biosciences and Engineering, 2020, 17 (3): 2592- 2615
doi: 10.3934/mbe.2020142
16 MAKARAM N, KARTHICK P A, SWAMINATHAN R Analysis of dynamics of EMG signal variations in fatiguing contractions of muscles using transition network approach[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 4003608
17 HU B, WANG Y, MU J A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection[J]. Mathematical Biosciences and Engineering, 2024, 21 (1): 144- 169
18 JAMIN A, HUMEAU-HEURTIER A (multiscale) cross-entropy methods: a review[J]. Entropy, 2020, 22 (1): 45
19 COSTA M, GOLDBERGER A L, PENG C K. Multiscale entropy analysis of biological signals [J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(2 Pt 1): 021906.
20 WANG S, TANG H, WANG B, et al Analysis of fatigue in the biceps brachii by using rapid refined composite multiscale sample entropy[J]. Biomedical Signal Processing and Control, 2021, 67: 102510
doi: 10.1016/j.bspc.2021.102510
21 SUN Y, CAO Y, LI P, et al Vibration-based fault diagnosis for railway point machines using VMD and multiscale fluctuation-based dispersion entropy[J]. Chinese Journal of Electronics, 2024, 33 (3): 803- 813
doi: 10.23919/cje.2022.00.075
22 SU H, WANG Z, CAI Y, et al Refined composite multiscale fluctuation dispersion entropy and supervised manifold mapping for planetary gearbox fault diagnosis[J]. Machines, 2023, 11 (1): 47
doi: 10.3390/machines11010047
23 WANG X, JIANG H Gearbox fault diagnosis based on refined time-shift multiscale reverse dispersion entropy and optimised support vector machine[J]. Machines, 2023, 11 (6): 646
doi: 10.3390/machines11060646
24 ZHENG J, WANG J, PAN H, et al Refined time-shift multiscale slope entropy: a new nonlinear dynamic analysis tool for rotating machinery fault feature extraction[J]. Nonlinear Dynamics, 2024, 112 (22): 19887- 19915
doi: 10.1007/s11071-024-10106-y
25 AZAMI H, ESCUDERO J Amplitude- and fluctuation-based dispersion entropy[J]. Entropy, 2018, 20 (3): 210
doi: 10.3390/e20030210
26 PATEL P, BALASUBRAMANIAN S, ANNAVARAPU R N Cross subject emotion identification from multichannel EEG sub-bands using Tsallis entropy feature and KNN classifier[J]. Brain Informatics, 2024, 11 (1): 7
doi: 10.1186/s40708-024-00220-3
27 CHEN Z, WU C, WANG J, et al Tsallis entropy-based complexity-IPE casualty plane: a novel method for complex time series analysis[J]. Entropy, 2024, 26 (6): 521
doi: 10.3390/e26060521
28 曹震, 吕东澔, 张勇, 等 基于sEMG信号几何特征的肌肉疲劳分类[J]. 传感器与微系统, 2024, 43 (7): 145- 148
CAO Zhen, LV Donghao, ZHANG Yong, et al Muscle fatigue classification based on geometric features of sEMG signal[J]. Transducer and Microsystem Technologies, 2024, 43 (7): 145- 148
29 WANG Y, SHANG P Complexity analysis of time series based on generalized fractional order refined composite multiscale dispersion entropy[J]. International Journal of Bifurcation and Chaos, 2020, 30 (14): 2050211
doi: 10.1142/S0218127420502119
30 徐哲熙, 刘婷, 任晟民, 等 基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断[J]. 工程科学与技术, 2024, 56 (3): 41- 51
XU Zhexi, LIU Ting, REN Shengmin, et al Fault diagnosis method of hydropower units based on time-shifted multiscale fluctuation dispersion entropy and improved kernel extreme learning machine[J]. Advanced Engineering Sciences, 2024, 56 (3): 41- 51
[1] 杨延璞,伍智泓,孟文昊,卓玥鸣,刘嘉玲. 基于Hammerstein模型和表面肌电的过头作业上肢肌肉疲劳评估[J]. 浙江大学学报(工学版), 2025, 59(12): 2483-2494.
[2] 王万良,潘杰,王铮,潘家宇. 基于双分支网络的表面肌电信号识别方法[J]. 浙江大学学报(工学版), 2024, 58(11): 2208-2218.
[3] 何恺伦,吕健,李林,徐兆,潘伟杰. 基于表面肌电与步态的外骨骼穿戴疲劳评测[J]. 浙江大学学报(工学版), 2023, 57(10): 2077-2085.
[4] 余文韬,谢旭,成程. 焊接构造对T型接头超低周疲劳性能的影响[J]. 浙江大学学报(工学版), 2021, 55(1): 31-37.
[5] 段有康,陈小刚,桂剑,马斌,李顺芬,宋志棠. 基于相位划分的下肢连续运动预测[J]. 浙江大学学报(工学版), 2021, 55(1): 89-95.
[6] 胡天中,余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版), 2019, 53(10): 1852-1864.
[7] 都明宇, 鲍官军, 杨庆华, 王志恒, 张立彬. 基于改进支持向量机的人手动作模式识别方法[J]. 浙江大学学报(工学版), 2018, 52(7): 1239-1246.
[8] 赵翠莲, 徐浩宇, 罗林辉, 王凯. 熵在不同等级偏瘫患者sEMG运动检测中的应用[J]. 浙江大学学报(工学版), 2018, 52(4): 798-805.
[9] 刘磊, 杨鹏, 刘作军. 采用多核相关向量机的人体步态识别[J]. 浙江大学学报(工学版), 2017, 51(3): 562-571.
[10] 杨冰,王小华,杨鑫,黄孝喜. 基于HOG金字塔人脸识别方法[J]. 浙江大学学报(工学版), 2014, 48(9): 1564-1569.
[11] 彭海,赵巨峰,冯华君,徐之海,李奇,陈跃庭. 基于区域显著性的双波段图像融合方法[J]. J4, 2012, 46(11): 2109-2115.
[12] 佘青山, 孟明, 罗志增, 马玉良. 基于多核学习的下肢肌电信号动作识别[J]. J4, 2010, 44(7): 1292-1297.
[13] 张海红 王健 杨红春. 肱二头肌离心和向心收缩的肌电信号特征[J]. J4, 2006, 40(11): 1937-1941.
[14] 张海红 王健 杨红春. 肱二头肌离心和向心收缩的肌电信号特征[J]. J4, 2006, 40(11): 1937-1941.
[15] 郭健 孙炳楠. 基于小波变换的桥梁健康监测多尺度分析[J]. J4, 2005, 39(1): 114-118.