计算机技术、控制工程 |
|
|
|
|
基于双分支网络的表面肌电信号识别方法 |
王万良( ),潘杰,王铮,潘家宇 |
浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 |
|
Recognition method of surface electromyographic signal based on two-branch network |
Wanliang WANG( ),Jie PAN,Zheng WANG,Jiayu PAN |
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
王万良,潘杰,王铮,潘家宇. 基于双分支网络的表面肌电信号识别方法[J]. 浙江大学学报(工学版), 2024, 58(11): 2208-2218.
Wanliang WANG,Jie PAN,Zheng WANG,Jiayu PAN. Recognition method of surface electromyographic signal based on two-branch network. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2208-2218.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.002
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2208
|
1 |
BHAUMIK G, VERMA M, GOVIL M C, et al Hyfinet: hybrid feature attention network for hand gesture recognition[J]. Multimedia Tools and Applications, 2023, 82 (4): 4863- 4882
doi: 10.1007/s11042-021-11623-3
|
2 |
都明宇, 鲍官军, 杨庆华, 等 基于改进支持向量机的人手动作模式识别方法[J]. 浙江大学学报: 工学版, 2018, 52 (7): 1239- 1246 DOU Mingyu, BAO Guanjun, YANG Qinghua, et al Novel method in pattern recognition of hand actions based on improved support vector machine[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1239- 1246
|
3 |
赵翠莲, 徐浩宇, 罗林辉, 等 熵在不同等级偏瘫患者sEMG运动检测中的应用[J]. 浙江大学学报: 工学版, 2018, 52 (4): 798- 805 ZHAO Cuilian, XU Haoyu, LUO Linhui, et al SEMG activity detection of hemiplegic patients in different stages using entropy algorithms[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 798- 805
|
4 |
CHENG Y, LI G, YU M, et al Gesture recognition based on surface electromyography-feature image[J]. Concurrency and Computation: Practice and Experience, 2021, 33 (6): e6051
doi: 10.1002/cpe.6051
|
5 |
SUK H I, SIN B K, LEE S W Hand gesture recognition based on dynamic Bayesian network framework[J]. Pattern Recognition, 2010, 43 (9): 3059- 3072
doi: 10.1016/j.patcog.2010.03.016
|
6 |
QI J, JIANG G, LI G, et al Intelligent human-computer interaction based on surface EMG gesture recognition[J]. IEEE Access, 2019, 7: 61378- 61387
doi: 10.1109/ACCESS.2019.2914728
|
7 |
BARGELLESI N, CARLETTI M, CENEDESE A, et al A random forest-based approach for hand gesture recognition with wireless wearable motion capture sensors[J]. IFAC-PapersOnLine, 2019, 52 (11): 128- 133
doi: 10.1016/j.ifacol.2019.09.129
|
8 |
CHEN H, ZHANG Y, LI G, et al Surface electromyography feature extraction via convolutional neural network[J]. International Journal of Machine Learning and Cybernetics, 2020, 11 (1): 185- 196
doi: 10.1007/s13042-019-00966-x
|
9 |
WANG H, ZHANG Y, LIU C, et al sEMG based hand gesture recognition with deformable convolutional network[J]. International Journal of Machine Learning and Cybernetics, 2022, 13 (6): 1729- 1738
doi: 10.1007/s13042-021-01482-7
|
10 |
HU Y, WONG Y, WEI W, et al A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition[J]. PloS one, 2018, 13 (10): e0206049
doi: 10.1371/journal.pone.0206049
|
11 |
TSINGANOS P, CORNELIS B, CORNELIS J, et al. Improved gesture recognition based on sEMG signals and TCN [C]// IEEE International Conference on Acoustics, Speech and Signal Processing . Brighton: IEEE, 2019: 1169-1173.
|
12 |
WANG W, YOU W, WANG Z, et al Feature fusion-based improved capsule network for sEMG signal recognition[J]. Computational Intelligence and Neuroscience, 2022, (1): 7603319
|
13 |
KUMAR V, MINZ S Feature selection: a literature review[J]. SmartCR, 2014, 4 (3): 211- 229
|
14 |
CHEN G, WANG W, WANG Z, et al Two-dimensional discrete feature based spatial attention CapsNet for sEMG signal recognition[J]. Applied Intelligence, 2020, 50: 3503- 3520
doi: 10.1007/s10489-020-01725-0
|
15 |
GU J, WANG Z, KUEN J, et al Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354- 377
doi: 10.1016/j.patcog.2017.10.013
|
16 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90
doi: 10.1145/3065386
|
17 |
O'SHEA K, NASH R. An introduction to convolutional neural networks [EB/OL]. [2023-09-01]. https://arxiv.org/abs/1511.08458.
|
18 |
SHERSTINSKY A Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306
doi: 10.1016/j.physd.2019.132306
|
19 |
YU Y, SI X, HU C, et al A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31 (7): 1235- 1270
doi: 10.1162/neco_a_01199
|
20 |
SHEWALKAR A, NYAVANANDI D, LUDWIG S A Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU[J]. Journal of Artificial Intelligence and Soft Computing Research, 2019, 9 (4): 235- 245
doi: 10.2478/jaiscr-2019-0006
|
21 |
CHO K, VAN M B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [EB/OL]. [2023-09-01]. https://arxiv.org/abs/1406.1078.
|
22 |
BERGLUND M, RAIKO T, HONKALA M, et al. Bidirectional recurrent neural networks as generative models [EB/OL]. [2023-09-01]. https://proceedings.neurips.cc/paper/2015/hash/c75b6f114c23a4d7ea11331e7c00e73c-Abstract.html.
|
23 |
LI X, WANG W, HU X, et al. Selective kernel networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 510-519.
|
24 |
ATZORI M, GIJSBERTS A, HEYNEN S, et al. Building the Ninapro database: a resource for the biorobotics community [C]// 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics . Rome: IEEE, 2012: 1258-1265.
|
25 |
NAZMI N, RAHMAN M A, YAMAMOTO S, et al Assessment on stationarity of EMG signals with different windows size during isotonic contractions[J]. Applied Sciences, 2017, 7 (10): 1050
doi: 10.3390/app7101050
|
26 |
HUDGINS B, PARKER P, SCOTT R N A new strategy for multifunction myoelectric control[J]. IEEE Transactions on Biomedical Engineering, 1993, 40 (1): 82- 94
doi: 10.1109/10.204774
|
27 |
PHINYOMARK A, PHUKPATTARANONT P, LIMSAKUL C Feature reduction and selection for EMG signal classification[J]. Expert Systems with Applications, 2012, 39 (8): 7420- 7431
doi: 10.1016/j.eswa.2012.01.102
|
28 |
ABBASPOUR S, LINDEN M, GHOLAMHOSSEINI H, et al Evaluation of surface EMG-based recognition algorithms for decoding hand movements[J]. Medical and Biological Engineering and Computing, 2020, 58: 83- 100
doi: 10.1007/s11517-019-02073-z
|
29 |
ZI L I, ZA X G, BI Z, et al Review of sEMG-based motion intent recognition methods in non-ideal conditions[J]. Acta Automatica Sinica, 2021, 47 (5): 955- 969
|
30 |
PAUL Y, GOYAL V, JASWAL R A. Comparative analysis between SVM & KNN classifier for EMG signal classification on elementary time domain features [C]// 4th International Conference on Signal Processing, Computing and Control . Solan: IEEE, 2017: 169-175.
|
31 |
NARAYAN Y Comparative analysis of SVM and Naive Bayes classifier for the SEMG signal classification[J]. Materials Today: Proceedings, 2021, 37: 3241- 3245
doi: 10.1016/j.matpr.2020.09.093
|
32 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . [S. l. ]: IEEE, 2016: 770-778.
|
33 |
ZHAO R, WANG D, YAN R, et al Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE Transactions on Industrial Electronics, 2017, 65 (2): 1539- 1548
|
34 |
GRAVES A, SCHMIDHUBER J Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18 (5/6): 602- 610
|
35 |
SHEN S, WANG X, MAO F, et al Movements classification through sEMG with convolutional vision transformer and stacking ensemble learning[J]. IEEE Sensors Journal, 2022, 22 (13): 13318- 13325
doi: 10.1109/JSEN.2022.3179535
|
36 |
WU Y, ZHENG B, ZHAO Y. Dynamic gesture recognition based on LSTM-CNN [C]// Chinese Automation Congress . Xi’an: IEEE, 2018: 2446-2450.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|