Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 503-511    DOI: 10.3785/j.issn.1008-973X.2023.03.008
计算机与控制工程     
基于高采样率惯性测量单元的手部状态与手势识别
李卓峰(),孙铭会*()
吉林大学 计算机科学与技术学院,吉林 长春 130012
Hand gesture/state recognition based on inertial measurement unit at high sample rate
Zhuo-feng LI(),Ming-hui SUN*()
Department of Computer Science and Technology, Jilin University, Changchun 130012, China
 全文: PDF(3956 KB)   HTML
摘要:

为了同时实现手势识别与手部状态识别,针对高采样率惯性测量单元具有同时采集动作信号与振动信号的特点,搭建基于单惯性测量单元的手势识别与触摸识别原型设备. 可视化分析手部状态数据与手势数据在时域与频域上的差异,建立手部状态、划动手势与画圈手势数据集. 针对数据特征的差异,提出差异化特征提取方法,分别构建手部状态分类与手势分类的神经网络结构. 使用数据集训练神经网络模型,在手部综合状态识别任务中正确率达到99%,在划动手势识别任务和画圈手势识别任务中的正确率均达到98%. 提出实时数据流处理、状态转移、未知类别判断的原型程序框架,基于手部状态识别模型实体与手势识别模型实体搭建实时程序,测量实际运行整体计算延时与单模型计算延时,验证模型实时运算能力. 模型评估实验与实时运算能力验证实验结果表明,使用高采样率惯性测量单元准确且实时地识别手部状态与手势具备可行性.

关键词: 人机交互惯性测量单元手势识别触摸识别可穿戴设备    
Abstract:

In order to realize gesture recognition and hand state recognition at the same time, a single inertial measurement unit-based gesture recognition and touch recognition prototype was built, considering the inertial measurement unit at high sample rate has the capability of collecting motion signals and vibration signals simultaneously. The differences within hand state data and gesture data in the time and frequency domains were visually analyzed. Hand state, slipping gesture and circling gesture data sets were established. Considering the difference within data features, differential feature extraction methods were proposed, and neural network structures for hand state classification and gesture classification were constructed. Neural network models were trained by the data sets to achieve 99% accuracy rate in the comprehensive hand state recognition task, and 98% accuracy rate in both the slipping gesture recognition task and the circling gesture recognition task. A prototype program framework for real-time data stream processing, state shifting, and unknown class judgment was proposed. And a real-time program based on the hand state recognition model entities and the gesture recognition model entities was built, and the overall computational latency of the actual operation and the single model computational latency were measured, in order to prove the capability of real-time computing. Experimental results of model evaluation and real-time computing verification showed that, accurate and real-time hand states and gesture recognition with high sample rate inertial measurement units was feasible.

Key words: human-computer interaction    inertial measurement unit    hand gesture recognition    touch recognition    wearable device
收稿日期: 2022-03-12 出版日期: 2023-03-31
CLC:  TP 334.2  
基金资助: 国家自然科学基金资助项目(61872164)
通讯作者: 孙铭会     E-mail: zfli20@mails.jlu.edu.cn;smh@jlu.edu.cn
作者简介: 李卓峰(1998—),男,硕士生. 从事人机交互研究. orcid.org/0000-0002-6692-4551. E-mail: zfli20@mails.jlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李卓峰
孙铭会

引用本文:

李卓峰,孙铭会. 基于高采样率惯性测量单元的手部状态与手势识别[J]. 浙江大学学报(工学版), 2023, 57(3): 503-511.

Zhuo-feng LI,Ming-hui SUN. Hand gesture/state recognition based on inertial measurement unit at high sample rate. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 503-511.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.008        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/503

图 1  硬件佩戴示例
图 2  硬件连接示例
图 3  单轴加速度在时域上的原始信号、低频信号与高频信号
图 4  不同情况下的频段能量分布图
图 5  不同特征上各分类数据的t-SNE可视化图
模型名称 分类数量 模型分类类别
A 2 未佩戴、佩戴时手部静止
B 2 划动、画圈
C 2 顺时针、逆时针
D 3 静止(包括未佩戴和手部静止)、点击、
手部移动(包括划动与画圈与空中运动)
E 3 (划动)左、居中、右
F 3 (划动)上、居中、下
G 2 表面上移动、非表面上移动
表 1  模型的任务拆分
图 6  特征分类器结构
图 7  自编码器结构
模型名称 N A/% P/% R/% F/%
A 240 97.92
(0.92)
100.00
(0.00)
95.83
(1.84)
97.86
(0.95)
B 960 90.63
(0.78)
90.63
(1.76)
90.67
(0.95)
90.63
(0.69)
C 620 98.63
(1.32)
99.29
(1.61)
97.97
(1.03)
98.62
(1.31)
D 600 99.22
(0.14)
99.30
(0.22)
98.75
(0.19)
99.01
(0.17)
E 480 99.77
(0.18)
99.73
(0.23)
99.76
(0.19)
99.75
(0.20)
F 480 94.23
(3.51)
93.94
(3.09)
94.64
(3.18)
93.77
(3.72)
G 1920 98.42
(0.23)
99.21
(0.37)
97.63
(0.53)
98.41
(0.23)
表 2  分类模型评估指标均值与标准差
图 8  2种分类任务的混淆矩阵
图 9  实时程序状态转移图
图 10  未知类别的判别树
模型名称 T/ms 模型名称 T/ms
A 0.92(1.95) E 1.28(1.86)
C 1.04(1.34) F 2.02(3.28)
D 0.99(1.75) G 1.15(2.76)
表 3  模型计算时延的均值与标准差
1 SIEK K A, ROGERS Y, CONNELLY K H. Fat finger worries: how older and younger users physically interact with PDAs [C]// IFIP Conference on Human-Computer Interaction. [S.l.]: Springer, 2005: 267-280.
2 ZHOU J, ZHANG Y, LAPUT G, et al. AuraSense: enabling expressive around-smartwatch interactions with electric field sensing [C]// Proceedings of the 29th Annual Symposium on User Interface Software and Technology. [S.l.]: Association for Computing Machinery, 2016: 81-86.
3 ZHANG Y, KIENZLE W, MA Y, et al. ActiTouch: robust touch detection for on-skin AR/VR interfaces [C]// Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. [S.l.]: Association for Computing Machinery, 2019: 1151-1159.
4 LAPUT G, HARRISON C. SurfaceSight: a new spin on touch, user, and object sensing for IoT experiences [C]// Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. [S.l.]: Association for Computing Machinery, 2019: 1-12.
5 SUKKARIEH S, NEBOT E M, DURRANT-WHYTE H F A high integrity IMU/GPS navigation loop for autonomous land vehicle applications[J]. IEEE Transactions on Robotics and Automation, 1999, 15 (3): 572- 578
doi: 10.1109/70.768189
6 BU Y, XIE L, YIN Y, et al. Handwriting-assistant: reconstructing continuous strokes with millimeter-level accuracy via attachable inertial sensors [C]// Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. [S.l.]: Association for Computing Machinery, 2021, 5(4): 1-25.
7 BAO L, INTILLE S S. Activity recognition from user-annotated acceleration data [C]// International Conference on Pervasive Computing. [S.l.]: Springer, 2004: 1-17.
8 GU Y, YU C, LI Z, et al. Accurate and low-latency sensing of touch contact on any surface with finger-worn IMU sensor [C]// Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. [S.l.]: Association for Computing Machinery, 2019: 1059-1070.
9 XU X, LI J, YUAN T, et al. HulaMove: using commodity IMU for waist interaction [C]// Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. [S.l.]: Association for Computing Machinery, 2021: 1-16.
10 OTT F, WEHBI M, HAMANN T, et al. The OnHW dataset: online handwriting recognition from IMU-enhanced ballpoint pens with machine learning [C]// Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. [S.l.]: Association for Computing Machinery, 2020, 4(3): 1-20.
11 WEHBI M, HAMANN T, BARTH J, et al. Towards an IMU-based pen online handwriting recognizer [C]// International Conference on Document Analysis and Recognition. [S.l.]: Springer, 2021: 289-303.
12 XU X, GONG J, BRUM C, et al. Enabling hand gesture customization on wrist-worn devices [C]// Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. [S.l.]: Springer, 2022: 1-19.
13 MEIER M, STRELI P, FENDER A, et al. TaplD: rapid touch interaction in virtual reality using wearable sensing [C]// 2021 IEEE Virtual Reality and 3D User Interfaces (VR). Lisboa: IEEE, 2021: 519-528.
14 LAPUT G, XIAO R, HARRISON C. Viband: high-fidelity bio-acoustic sensing using commodity smartwatch accelerometers [C]// Proceedings of the 29th Annual Symposium on User Interface Software and Technology. [S.l.]: Association for Computing Machinery, 2016: 321-333.
15 LAPUT G, HARRISON C. Sensing fine-grained hand activity with smartwatches [C]// Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. [S.l.]: Association for Computing Machinery, 2019: 1-13.
16 GONG J, GUPTA A, BENKO H. Acustico: surface tap detection and localization using wrist-based acoustic TDOA sensing [C]// Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology. [S.l.]: Association for Computing Machinery, 2020: 406-419.
17 MADGWICK S O H, HARRISON A J L, VAIDYANATHAN R. Estimation of IMU and MARG orientation using a gradient descent algorithm [C]// 2011 IEEE International Conference on Rehabilitation Robotics. Zurich: IEEE, 2011: 1-7.
[1] 辛文斌,郝惠敏,卜明龙,兰媛,黄家海,熊晓燕. 基于ShuffleNetv2-YOLOv3模型的静态手势实时识别方法[J]. 浙江大学学报(工学版), 2021, 55(10): 1815-1824.
[2] 徐建明,赵智鹏,董建伟. 连杆侧无传感器下机器人柔性关节系统的零力控制[J]. 浙江大学学报(工学版), 2020, 54(7): 1256-1263.
[3] 程时伟,郭炜. 基于视觉行为与文本特征分析的阅读批注生成方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1115-1125.
[4] 费飞,刘申宇,吴常铖,杨德华,周升丽. 基于磁悬浮结构的人体动能采集技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2215-2222.
[5] 忽丽莎, 王素贞, 陈益强, 高晨龙, 胡春雨, 蒋鑫龙, 陈振宇, 高兴宇. 基于可穿戴设备的跌倒检测算法综述[J]. 浙江大学学报(工学版), 2018, 52(9): 1717-1728.
[6] 蒋卓华, 蒋焕煜, 童俊华. 穴盘苗自动移栽机末端执行器的优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1119-1125.
[7] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[8] 宫勇, 张三元, 刘志方, 沈法. 颜色对图标视觉搜索效率影响的眼动研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1987-1994.
[9] 跃龙,陈岭,陈根才. 基于层次化BoF模型和Spectral-HIK过滤的手势识别算法闯[J]. J4, 2013, 47(9): 1531-1536.
[10] 路丹晖, 周文晖, 龚小谨, 刘济林. 视觉和IMU融合的移动机器人运动解耦估计[J]. J4, 2012, 46(6): 1021-1026.
[11] 陈卫东, 李昕, 刘俊, 郝耀耀, 廖玉玺, 苏煜, 张韶岷, 郑筱祥. 基于数学形态学的眼电信号识别及其应用[J]. J4, 2011, 45(4): 644-649.
[12] 徐韡 刘向东 孟晓. 基于光学信息处理的交互式电子白板[J]. J4, 2006, 40(1): 33-37.