计算机技术、自动控制技术 |
|
|
|
|
基于相位划分的下肢连续运动预测 |
段有康1,2( ),陈小刚1,*( ),桂剑3,马斌3,4,李顺芬1,宋志棠1 |
1. 中国科学院 上海微系统与信息技术研究所,上海 200050 2. 中国科学院大学,北京 100049 3. 中国科学院 上海高等研究院,上海 200125 4. 上海中研久弋科技有限公司,上海 201200 |
|
Continuous kinematics prediction of lower limbs based on phase division |
You-kang DUAN1,2( ),Xiao-gang CHEN1,*( ),Jian GUI3,Bin MA3,4,Shun-fen LI1,Zhi-tang SONG1 |
1. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200125, China 4. China Research Institute JIU YI, Shanghai 201200, China |
引用本文:
段有康,陈小刚,桂剑,马斌,李顺芬,宋志棠. 基于相位划分的下肢连续运动预测[J]. 浙江大学学报(工学版), 2021, 55(1): 89-95.
You-kang DUAN,Xiao-gang CHEN,Jian GUI,Bin MA,Shun-fen LI,Zhi-tang SONG. Continuous kinematics prediction of lower limbs based on phase division. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 89-95.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.011
或
http://www.zjujournals.com/eng/CN/Y2021/V55/I1/89
|
1 |
龙亿. 下肢外骨骼人体运动预测与人机协调控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. LONG Yi. Research on human body motion prediction and human-machine coordinated control technology of lower exoskeletonx [D]. Harbin: Harbin Institute of Technology, 2017.
|
2 |
俞毕洪. 基于表面肌电信号的穿戴式人体行为识别系统[D]. 杭州: 浙江大学, 2018. YU Bi-hong. Wearable human behavior recognition system based on surface EMG signals [D]. Hangzhou: Zhejiang University, 2018.
|
3 |
丁其川, 熊安斌, 赵新刚, 等 基于表面肌电的运动意图识别方法研究及应用综述[J]. 自动化学报, 2016, 42 (1): 13- 25 DING Qi-chuan, XIONG An-bin, ZHAO Xin-gang, et al Research and application review of motion intention recognition method based on surface EMG[J]. Journal of Automation, 2016, 42 (1): 13- 25
|
4 |
AI Q, ZHANG Y, QI W, et al Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals[J]. Symmetry, 2017, 9 (8): 147- 166
doi: 10.3390/sym9080147
|
5 |
ZHANG F, LI P F, HOU Z G, et al sEMG-based continuous estimation of joint angles of human legs by using BP neural network[J]. Neurocomputing, 2011, 78 (1): 139- 148
|
6 |
隋修武, 石峰 基于改进MPSO-SVM算法的下肢连续运动预测模型[J]. 天津工业大学学报, 2019, 38 (6): 69- 75 SUI Xiu-wu, SHI Feng Prediction model of lower limb continuous motion based on improved MPSO-SVM algorithm[J]. Journal of Tianjin University of Technology, 2019, 38 (6): 69- 75
doi: 10.3969/j.issn.1671-024x.2019.06.012
|
7 |
徐俊武, 沈林勇, 章亚男, 等 利用健肢sEMG信号对康复机械腿进行映射控制[J]. 工业控制计算机, 2019, 32 (5): 8- 10 XU Jun-wu, SHEN Lin-yong, ZHANG Ya-nan, et al Mapping control of rehabilitation mechanical legs using sEMG signals of healthy limbs[J]. Industrial Control Computer, 2019, 32 (5): 8- 10
doi: 10.3969/j.issn.1001-182X.2019.05.004
|
8 |
TIPPING M E Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1 (3): 211- 244
|
9 |
AU S K, WEBER J, HERR H Powered ankle foot prosthesis improves walking metabolic economy[J]. IEEE Transactions on Robotics, 2009, 25 (1): 51?66
|
10 |
张琴, 骆无意, 黄波, 等 基于肌电信号的下肢关节连续运动预测[J]. 华中科技大学学报: 自然科学版, 2017, 45 (10): 128- 132 ZHANG Qin, LUO Wu-yi, HUANG Bo, et al Prediction of continuous motion of lower limb joints based on EMG signals[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45 (10): 128- 132
|
11 |
CAI S, CHEN Y, HUANG S, et al SVM-based classification of sEMG signals for upper-limb self-rehabilitation training[J]. Front Neurorobot, 2019, 13: 31
doi: 10.3389/fnbot.2019.00031
|
12 |
陈树, 张继中 基于自适应均值粒子群算法的 SVM 参数优化方法[J]. 测控技术, 2018, 37 (4): 6- 10 CHEN Shu, ZHANG Ji-zhong SVM parameter optimization method based on adaptive mean particle swarm optimization[J]. Measurement and Control Technology, 2018, 37 (4): 6- 10
doi: 10.3969/j.issn.1000-8829.2018.04.002
|
13 |
范光辉, 葛科铎, 王璐, 等 基于下肢表面肌电信号的动作模式识别研究[J]. 齐齐哈尔大学学报: 自然科学版, 2018, 34 (6): 44- 48 FAN Guang-hui, GE Ke-duo, WANG Lu, et al Research on the action pattern recognition based on the electromyographic signal of the lower limb surface[J]. Journal of Qiqihar University: Natural Science Edition, 2018, 34 (6): 44- 48
|
14 |
SHULTZ A H, LAWSON B E, GOLDFARB M Variable cadence walking and ground adaptive standing with a powered ankle prosthesis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24 (4): 495- 505
doi: 10.1109/TNSRE.2015.2428196
|
15 |
张仁志, 崔慧娟 基于短时能量的语音端点检测算法研究[J]. 电声技术, 2005, 7: 52- 54 ZHANG Ren-zhi, CUI Hui-juan Research on speech endpoint detection algorithm based on short-term energy[J]. Electronic Acoustic Technology, 2005, 7: 52- 54
doi: 10.3969/j.issn.1002-8684.2005.07.015
|
16 |
卢祖能, 曾庆杏, 李承晏, 等. 实用肌电图学[M]. 北京: 人民卫生出版社, 2000: 424-434.
|
17 |
戴虹, 钱晋武, 张震, 等 GRNN在肌电预测踝关节运动中的应用[J]. 仪器仪表学报, 2013, 34 (4): 845- 852 DAI Hong, QIAN Jin-wu, ZHANG Zhen, et al Application of GRNN in ankle movement prediction based on surface electromyography[J]. Chinese Journal of Scientific Instrument, 2013, 34 (4): 845- 852
doi: 10.3969/j.issn.0254-3087.2013.04.020
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|