Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (10): 2077-2085    DOI: 10.3785/j.issn.1008-973X.2023.10.016
机械工程、能源工程     
基于表面肌电与步态的外骨骼穿戴疲劳评测
何恺伦1(),吕健1,*(),李林2,徐兆1,潘伟杰1
1. 贵州大学 现代制造技术教育部重点实验室,贵州 贵阳 550025
2. 贵州航天控制技术有限公司,贵州 贵阳 550009
Evaluation of exoskeleton wearing fatigue based on surface electromyography and gait
Kai-lun HE1(),Jian LV1,*(),Lin LI2,Zhao XU1,Wei-jie PAN1
1. Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China
2. Guizhou Aerospace Control Technology Co. Ltd, Guiyang 550009, China
 全文: PDF(1891 KB)   HTML
摘要:

针对穿戴无源下肢外骨骼疲劳状态评价片面的问题,提出一种结合肌肉疲劳阈值(EMGFT)、生物力学分析和主观疲劳自觉量表(sRPE)的外骨骼综合效能评价方法. 区别于传统表面肌电信号(sEMG)或血氧饱和度的单一测定方法,所提方法可以有效提高无源负载下肢外骨骼效能评测精度. 通过动作捕捉对受试者进行步态对比分析,获取空间位置信息与肌肉发力情况,并计算下肢膝关节稳定性;采集受试者的sEMG进行预处理,并计算肌肉疲劳阈值;结合sRPE评分与膝关节偏移量方差对EMGFT进行主客观验证. 结果表明所提方法可以有效评价无源下肢外骨骼,外骨骼使受试者EMGFT到达时间平均推迟了42.9%,下肢稳定性提升了75.8%,主观疲劳感受缓解了30. 3%.

关键词: 无源下肢外骨骼肌肉疲劳阈值动作捕捉步态分析主观疲劳量表    
Abstract:

A comprehensive efficiency evaluation method on exoskeleton was proposed combined with the electromyogram fatigue threshold (EMGFT), biomechanical analysis and session rating of perceived exertion (sRPE), aiming at the one-sided problem of evaluating the fatigue status of the exoskeleton of the wearable passive lower extremities. Different from the single measurement method including the traditional surface electromyography (sEMG) or blood oxygen saturation, the proposed method could effectively improve the measurement accuracy of passive loading lower extremity exoskeleton performance. The gaits of the subjects were compared and analyzed, the spatial position information and muscle force generation were obtained, and the stability of lower limb knee joint was calculated. The sEMG of the subjects was collected and preprocessed, and the muscle fatigue threshold was calculated. The evaluation method is effective for evaluating the comprehensive efficiency evaluation method on exoskeleton. The extremities delayed the arrival time of EMGFT by an average of 42.9%, improved the stability of the lower limb by 75.8%, and relieved the subjective fatigue by 30.3%.

Key words: passive lower extremity exoskeleton    muscle fatigue threshold    motion capture    gait analysis    subjective fatigue scale
收稿日期: 2022-10-25 出版日期: 2023-10-18
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(52065010);贵州省科技支撑计划(黔科合支撑[2022]一般197)资助项目;贵州省基础研究计划项目(黔科合基础-ZK[2021]一般341)
通讯作者: 吕健     E-mail: 1306798570@qq.com;jlv@gzu.edu.cn
作者简介: 何恺伦(1996—),男,硕士生,从事人机融合研究. orcid.org/0000-0002-5740-4706. E-mail: 1306798570@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何恺伦
吕健
李林
徐兆
潘伟杰

引用本文:

何恺伦,吕健,李林,徐兆,潘伟杰. 基于表面肌电与步态的外骨骼穿戴疲劳评测[J]. 浙江大学学报(工学版), 2023, 57(10): 2077-2085.

Kai-lun HE,Jian LV,Lin LI,Zhao XU,Wei-jie PAN. Evaluation of exoskeleton wearing fatigue based on surface electromyography and gait. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2077-2085.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.016        https://www.zjujournals.com/eng/CN/Y2023/V57/I10/2077

图 1  步态分析的对比实验流程
状态 负载质量/kg 分组情况 成员

配戴外骨骼(A组)

20
普通组A1 1~6号
熟练组A2 7~12号
强壮组A3 13~18号

未佩戴外骨骼(B组)

20
普通组B1 1~6号
熟练组B2 7~12号
强壮组B3 13~18号
表 1  外骨骼负载实验分组情况
图 2  人体步态周期划分示意图
图 3  sEMG与IMU传感器分布图
图 4  sEMG与IMU传感器设置场景图
图 5  受试者实验状态及环境
图 6  EMGFT计算原理图
图 7  膝关节外展角示意图
RPE评分 英文表述 中文表述
0 Rest 十分放松,休息状态
1 Really easy 相当轻松
2 Easy 轻松
3 Moderate 一般
4 Sort of hard 有些费力
5 Hard 费力
6
7 Really hard 非常费力
8
9 Really really hard 非常非常费力
10 Just like my hardest race 到达极限
表 2  CR-10 scale疲劳程度对照表
图 8  sEMG信号预处理过程时域和频域图
图 9  RMS拟合直线交点与EMGFT到达时间的变化趋势
对象组 EMGFT平均到达时间/s 变化时长/s
A组 B组
1 23.4 24.7 1.3
2 83.5 31.8 51.7
3 116.2 71.6 44.6
表 3  A、B组的EMGFT平均到达时间与变化时长
图 10  膝关节偏移量方差的拟合直线与拟合直线的斜率
测试对象 0 min 2 min 4 min 6 min F
1号 1 4 5 6 4.21
2号 1 5 6 6
3号 0 5 6 7
4号 1 3 5 7
5号 0 5 5 6
6号 0 4 6 7
7号 0 3 3 4 2.38
8号 0 2 3 3
9号 0 3 3 4
10号 0 2 3 4
11号 1 3 3 4
12号 0 3 3 3
13号 0 2 2 3 2.08
14号 0 2 2 3
15号 0 3 3 3
16号 0 3 3 3
17号 0 2 3 4
18号 0 3 3 3
表 4  A组穿戴外骨骼且负重sRPE评分表
测试对象 0 min 2 min 4 min 6 min F
1号 4 5 6 7 5.5
2号 3 5 5 7
3号 4 5 7 7
4号 3 4 6 7
5号 4 5 7 8
6号 4 6 6 7
7号 3 4 5 7 4.67
8号 3 3 5 6
9号 2 3 6 7
10号 3 4 5 7
11号 2 3 6 8
12号 3 4 6 7
13号 1 3 3 4 2.58
14号 1 2 2 4
15号 2 3 3 3
16号 1 2 3 4
17号 2 3 4 4
18号 1 2 2 3
表 5  B组穿戴外骨骼且负重sRPE评分表
特征组 t/s P F
A1组 28 0.28 4.21
A2组 83 0.21 2.38
A3组 117 0.11 2.08
B1组 27 0.87 5.5
B2组 31 0.92 4.67
B3组 72 0.69 2.58
提升率 42.9% 75.8% 30.3%
表 6  各组特征值与总体提升率
1 XU Z, PAN W, HOU Y, et al A decision tree model for analysis and judgment of lower limb movement comfort level[J]. International Journal of Environmental Research and Public Health, 2022, 19 (11): 6437
doi: 10.3390/ijerph19116437
2 DIJK W V, KOOIJ H V D, HEKMAN E. A passive exoskeleton with artificial tendons: Design and experimental evaluation [C]// IEEE International Conference on Rehabilitation Robotics. Zurich: IEEE, 2011: 1-6.
3 LOVRENOVIC Z, DOUMIT M Development and testing of a passive walking assist exoskeleton[J]. Biocybernetics and Biomedical Engineering, 2019, 39 (4): 992- 1004
doi: 10.1016/j.bbe.2019.01.002
4 GUAN X, KUAI S, SONG L, et al. How height and weight of patients with spinal cord injury affect the spring locations of unpowered energy-stored exoskeleton [C]// 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Berlin: IEEE, 2019: 4449-4453.
5 FOSTER C, JOSE A, RODRIGUEZ MARROVO, et al Monitoring training loads: the past, the present, and the future[J]. International Journal of Sports Physiology and Performance, 2017, 12 (S2): 3- 8
6 MORSE J J, PALLASKA G, PIERCE P, et al Acute low-dose caffeine supplementation increases electromyographic fatigue threshold in healthy men[J]. Journal of Strength and Conditioning Research, 2016, 30 (11): 3236- 3241
doi: 10.1519/JSC.0000000000001603
7 刘晓光, 李梦楠, 王立玲, 等 基于表面肌电信号的康复过程中肌疲劳有效性分析[J]. 生物医学工程学杂志, 2019, 36 (1): 80- 84
LIU Xiao-guang, LI Meng-nan, WANG Li-ling, et al Effectiveness analysis of muscle fatigue in rehabilitation based on surface electromyogram[J]. Journal of Biomedical Engineering, 2019, 36 (1): 80- 84
doi: 10.7507/1001-5515.201703089
8 PHIBBS P J, ROE G, JONES B, et al Validity of daily and weekly self-reported training load measures in adolescent athletes[J]. Journal of Strength and Conditioning Research, 2017, 31 (4): 1121- 1126
doi: 10.1519/JSC.0000000000001708
9 CHEN D, CAI Y, QIAN X, et al. Bring Gait Lab to Everyday Life: gait analysis in terms of activities of daily living [C]// IEEE Internet of Things Journal. Buffalo: IEEE, 2020: 1298-1312.
10 TURNER A N, BISHOP C, MARSHALL G, et al How to monitor training load and mode using sRPE[J]. Prof Strength Cond, 2015, 39: 15- 20
11 DING Y, LIU S. Research on the application of TRIMP method in the training of martial arts athletes [C]// International Conference on Innovations in Economic Management and Social Science (IEMSS). Dordrecht: AP, 2017: 196-200.
12 TAO W, LIU T, ZHENG R, et al Gait analysis using wearable sensors[J]. Sensors, 2012, 12 (2): 2255- 2283
doi: 10.3390/s120202255
13 ZHU J, YI C, WEI B, et al The muscle fatigue’s effects on the sEMG-based gait phase classification: an experimental study and a novel training strategy[J]. Applied Sciences, 2021, 11 (9): 3821
doi: 10.3390/app11093821
14 CONCALVES, MAURO, LAROCHE, et al Utility of electromyographic fatigue threshold during treadmill running[J]. Muscle and Nerve, 2015, 52 (6): 1030- 1039
doi: 10.1002/mus.24658
15 PRROMSRI A, MOHR M, FEDEROLF P Principal postural acceleration and myoelectric activity: Interrelationship and relevance for characterizing neuromuscular function in postural control[J]. Human Movement Science, 2021, 77: 102792
doi: 10.1016/j.humov.2021.102792
[1] 李琳,薛泽浩,蔡蒂,张铁. 管道内壁四足爬壁机器人的运动学与步态规划[J]. 浙江大学学报(工学版), 2021, 55(12): 2286-2297.