| 电子与通信工程 |
|
|
|
|
| 基于Hammerstein模型和表面肌电的过头作业上肢肌肉疲劳评估 |
杨延璞( ),伍智泓,孟文昊,卓玥鸣,刘嘉玲 |
| 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064 |
|
| Upper-limb muscle fatigue assessment in overhead work based on Hammerstein model and surface electromyography |
Yanpu YANG( ),Zhihong WU,Wenhao MENG,Yueming ZHUO,Jialing LIU |
| Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an 710064, China |
引用本文:
杨延璞,伍智泓,孟文昊,卓玥鸣,刘嘉玲. 基于Hammerstein模型和表面肌电的过头作业上肢肌肉疲劳评估[J]. 浙江大学学报(工学版), 2025, 59(12): 2483-2494.
Yanpu YANG,Zhihong WU,Wenhao MENG,Yueming ZHUO,Jialing LIU. Upper-limb muscle fatigue assessment in overhead work based on Hammerstein model and surface electromyography. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2483-2494.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.003
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2483
|
| 1 |
REYES F A, SHUO D, YU H Shoulder-support exoskeletons for overhead work: current state, challenges and future directions[J]. IEEE Transactions on Medical Robotics and Bionics, 2023, 5 (3): 516- 527
doi: 10.1109/TMRB.2023.3275761
|
| 2 |
KWON Y J, KIM D H, SON B C, et al A work-related musculoskeletal disorders (WMSDs) risk-assessment system using a single-view pose estimation model[J]. International Journal of Environmental Research and Public Health, 2022, 19 (16): 9803
doi: 10.3390/ijerph19169803
|
| 3 |
FRASIE A, BERTRAND-CHARETTE M, COMPAGNAT M, et al Validation of the Borg CR10 Scale for the evaluation of shoulder perceived fatigue during work-related tasks[J]. Applied Ergonomics, 2024, 116: 104200
doi: 10.1016/j.apergo.2023.104200
|
| 4 |
CHIN J, HERLINA, IRIDIASTADI H, et al Workload analysis by using Nordic body map, Borg RPE and NIOSH manual lifting equation analyses: a case study in sheet metal industry[J]. Journal of Physics: Conference Series, 2019, 1424 (1): 012047
doi: 10.1088/1742-6596/1424/1/012047
|
| 5 |
ZHOU B, CHEN B, SHI H, et al SEMG-based fighter pilot muscle fatigue analysis and operation performance research[J]. Medicine in Novel Technology and Devices, 2022, 16: 100189
doi: 10.1016/j.medntd.2022.100189
|
| 6 |
徐兆, 吕健, 潘伟杰, 等 基于表面肌电信号和动作捕捉的上肢运动疲劳分析[J]. 生物医学工程学杂志, 2022, 39 (1): 92- 102 XU Zhao, LU Jian, PAN Weijie, et al Fatigue analysis of upper limb rehabilitation based on surface electromyography signal and motion capture[J]. Journal of Biomedical Engineering, 2022, 39 (1): 92- 102
|
| 7 |
LA DELFA N J, WHITTAKER R L, LOCKLEY R M E, et al The sensitivity of shoulder muscle fatigue to vertical hand location during complex manual force exertions[J]. International Journal of Industrial Ergonomics, 2022, 88: 103272
doi: 10.1016/j.ergon.2022.103272
|
| 8 |
YANG C, CÔTÉ J N Sex-specific effects of muscle fatigue on upper body kinematics and discomfort during a repetitive point task performed on a sit-stand stool[J]. International Journal of Industrial Ergonomics, 2021, 85: 103188
doi: 10.1016/j.ergon.2021.103188
|
| 9 |
MUSSO M, OLIVEIRA A S, BAI S Influence of an upper limb exoskeleton on muscle activity during various construction and manufacturing tasks[J]. Applied Ergonomics, 2024, 114: 104158
doi: 10.1016/j.apergo.2023.104158
|
| 10 |
刘光达, 董梦坤, 张守伟, 等 基于KPCA-SVM的表面肌电信号疲劳分类研究[J]. 电子测量与仪器学报, 2021, 35 (10): 1- 8 LIU Guangda, DONG Mengkun, ZHANG Shouwei, et al Research on fatigue classification of surface EMG signal based on KPCA and SVM[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35 (10): 1- 8
|
| 11 |
ZHANG Y, CHEN S, CAO W, et al MFFNet: multi-dimensional Feature Fusion Network based on attention mechanism for sEMG analysis to detect muscle fatigue[J]. Expert Systems with Applications, 2021, 185: 115639
doi: 10.1016/j.eswa.2021.115639
|
| 12 |
STEINLEY D K-means clustering: a half-century synthesis[J]. British Journal of Mathematical and Statistical Psychology, 2006, 59 (1): 1- 34
doi: 10.1348/000711005X48266
|
| 13 |
ALMEIDA J A S, BARBOSA L M S, PAIS A A C C, et al Improving hierarchical cluster analysis: a new method with outlier detection and automatic clustering[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 87 (2): 208- 217
doi: 10.1016/j.chemolab.2007.01.005
|
| 14 |
BAI E W, FU M. A blind approach to Hammerstein model identification [C]// 40th IEEE Conference on Decision and Control. Orlando: IEEE, 2002: 4794–4799.
|
| 15 |
LI Y, CHEN W, CHEN J, et al Neural network based modeling and control of elbow joint motion under functional electrical stimulation[J]. Neurocomputing, 2019, 340: 171- 179
doi: 10.1016/j.neucom.2019.03.003
|
| 16 |
ZHANG Z, CHU B, LIU Y, et al Multimuscle functional-electrical-stimulation-based wrist tremor suppression using repetitive control[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27 (5): 3988- 3998
doi: 10.1109/TMECH.2022.3150301
|
| 17 |
杨坤, 宗国仁, 王伟 基于Hammerstein系统的航空发动机部件级辨识建模方法[J]. 海军航空大学学报, 2025, 40 (1): 133- 141,98 YANG Kun, ZONG Guoren, WANG Wei Modeling and identification method for aerospace engine components based on Hammerstein systems[J]. Journal of Naval Aviation University, 2025, 40 (1): 133- 141,98
|
| 18 |
HABETS L E, BARTELS B, DE GROOT J F, et al Motor unit reserve capacity in spinal muscular atrophy during fatiguing endurance performance[J]. Clinical Neurophysiology, 2021, 132 (3): 800- 807
doi: 10.1016/j.clinph.2020.11.044
|
| 19 |
杨铮, 王立玲, 马东 基于自回归模型表面肌电信号检测肌肉疲劳研究[J]. 中国生物医学工程学报, 2018, 37 (6): 673- 679 YANG Zheng, WANG Liling, MA Dong Detection of muscle fatigue based on sEMG signal with AR model[J]. Chinese Journal of Biomedical Engineering, 2018, 37 (6): 673- 679
|
| 20 |
CORVINI G, CONFORTO S A simulation study to assess the factors of influence on mean and median frequency of sEMG signals during muscle fatigue[J]. Sensors, 2022, 22 (17): 6360
doi: 10.3390/s22176360
|
| 21 |
张弼. 基于块状结构模型的非线性自适应控制方法研究 [D]. 沈阳: 东北大学, 2017. ZHANG Bi. Research on nonlinear adaptive control methods for block-oriented models [D]. Shenyang: Northeastern University, 2017.
|
| 22 |
时振伟, 纪志成, 王艳 多元系统耦合带遗忘因子有限数据窗递推最小二乘辨识方法[J]. 控制与决策, 2016, 31 (10): 1765- 1771 SHI Zhenwei, JI Zhicheng, WANG Yan Coupled finite-data-window RLS identification approach with forgetting factors for multi-variate systems[J]. Control and Decision, 2016, 31 (10): 1765- 1771
|
| 23 |
牛惠祺, 张弼, 刘丽刚, 等 人体肌肉状态疲劳监测及其在外骨骼交互控制中的应用[J]. 生物医学工程学杂志, 2023, 40 (4): 654- 662 NIU Huiqi, ZHANG Bi, LIU Ligang, et al Human muscle fatigue monitoring method and its application for exoskeleton interactive control[J]. Journal of Biomedical Engineering, 2023, 40 (4): 654- 662
|
| 24 |
张慧芝, 张天骐, 方蓉, 等 基于SVD-K-means算法的软扩频信号伪码序列盲估计[J]. 系统工程与电子技术, 2024, 46 (1): 326- 333 ZHANG Huizhi, ZHANG Tianqi, FANG Rong, et al Blind estimation of pseudo-code sequence of soft spread spectrum signal based on SVD-K-means algorithm[J]. Systems Engineering and Electronics, 2024, 46 (1): 326- 333
|
| 25 |
方博儒, 仇大伟, 白洋, 等 表面肌电信号在肌肉疲劳研究中的应用综述[J]. 计算机科学与探索, 2024, 18 (9): 2261- 2275 FANG Boru, QIU Dawei, BAI Yang, et al Review of application of surface electromyography signals in muscle fatigue research[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18 (9): 2261- 2275
|
| 26 |
周玉, 夏浩, 岳学震, 等 基于改进K-means的局部离群点检测方法[J]. 工程科学与技术, 2024, 56 (4): 66- 77 ZHOU Yu, XIA Hao, YUE Xuezhen, et al Local outlier detection method based on improved K-means[J]. Advanced Engineering Sciences, 2024, 56 (4): 66- 77
|
| 27 |
何恺伦, 吕健, 李林, 等 基于表面肌电与步态的外骨骼穿戴疲劳评测[J]. 浙江大学学报: 工学版, 2023, 57 (10): 2077- 2085 HE Kailun, LV Jian, LI Lin, et al Evaluation of exoskeleton wearing fatigue based on surface electromyography and gait[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (10): 2077- 2085
|
| 28 |
MOOKERJEE S, MCMAHON M J Electromyographic analysis of muscle activation during sit-and-reach flexibility tests[J]. Journal of Strength and Conditioning Research, 2014, 28 (12): 3496- 3501
doi: 10.1519/JSC.0000000000000607
|
| 29 |
SUN J, LIU G, SUN Y, et al Application of surface electromyography in exercise fatigue: a review[J]. Frontiers in Systems Neuroscience, 2022, 16: 893275
doi: 10.3389/fnsys.2022.893275
|
| 30 |
ZHANG Q, HAYASHIBE M, FRAISSE P, et al FES-induced torque prediction with evoked EMG sensing for muscle fatigue tracking[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16 (5): 816- 826
doi: 10.1109/TMECH.2011.2160809
|
| 31 |
YANG Q, LI Y, LI Y, et al An adaptive Hammerstein model for FES-induced torque prediction based on variable forgetting factor recursive least squares algorithm[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 1109- 1118
doi: 10.1109/TNSRE.2024.3371465
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|