Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (1): 123-136    DOI: 10.3785/j.issn.1008-9209.2023.03.281
动物科学与动物医学     
大银鱼早期发育阶段微生物群落特征及其与免疫和代谢的关联
周依帆1(),张希昭1,2(),周彦锋1,2,徐东坡1,2,王晨赫1,郭世越1,蒋书伦2,尤洋1,2()
1.南京农业大学无锡渔业学院,江苏 无锡 214081
2.中国水产科学研究院淡水渔业研究中心,农业农村部淡水渔业与种质资源利用重点实验室,江苏 无锡 214081
Characteristics of microbial communities and their association with immunity and metabolism at the early developmental stage of Protosalanx chinensis
Yifan ZHOU1(),Xizhao ZHANG1,2(),Yanfeng ZHOU1,2,Dongpo XU1,2,Chenhe WANG1,Shiyue GUO1,Shulun JIANG2,Yang YOU1,2()
1.Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
2.Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
 全文: PDF(3592 KB)   HTML
摘要:

为了解大银鱼早期发育过程中的微生物群落变化规律与特征,采集大银鱼胚胎期(心跳期,XT)、内源性营养期(采样时间为孵化后第1天,记为H1)、混合性营养期(孵化后第4天,H4)、开口摄食期(孵化后第7天,H7)和外源性营养期(孵化后第10天,H10)5个发育时期的样本。通过16S rRNA基因测序技术观察大银鱼早期发育过程中的微生物群落演替,尤其是摄食前后的微生物群落特征和关键菌属;并结合同批次样品的转录组数据,基于关联网络方法重点分析了与免疫和代谢相关的菌属。结果显示:大银鱼早期发育阶段各时期的β多样性存在显著差异(P<0.001),其中,XT的优势菌群为黄杆菌属(Flavobacterium)和金黄杆菌属(Chryseobacterium);胚后H1时期的优势菌群为假单胞菌属(Pseudomonas);H4时期的主要菌群为黄杆菌属和假单胞菌属;H7和H10时期的主要菌群为弯曲杆菌属(Flectobacillus)和假单胞菌属。假单胞菌属在各时期中稳定存在。与多种免疫和代谢基因表达显著相关的是弯曲杆菌属等节点菌属。本研究首次获得了大银鱼早期发育阶段的微生物演替信息,同时,筛选到的优势菌属与节点菌属将为大银鱼苗种的规模化培育提供思路和参考。

关键词: 大银鱼早期发育微生物16S rRNA转录组    
Abstract:

In order to understand the changes and characteristics of microbial communities during early development of Protosalanx chinensis, samples were collected at five developmental periods, which are the embryonic period (heartbeat stage, XT), the endogenous nutrition period (the first day after hatching, H1), the mixed nutrition period (the fourth day after hatching, H4), the open feeding period (the seventh day after hatching, H7), and the exogenous nutrition period (the tenth day after hatching, H10). Microbial community succession during early development was observed by 16S rRNA gene sequencing technology, especially the characteristics and key microbial genera before and after feeding. Combined with the transcriptome data of the same batch of samples, the microbial genera related to immunity and metabolism were analyzed based on the association network method. The results showed that there were significant differences in β diversity among the different periods at the early developmental stage (P<0.001). The dominant bacteria in the XT period were Flavobacterium and Chryseobacterium, and the dominant bacterium in the H1 period was Pseudomonas. The main bacteria in the H4 period were Flavobacterium and Pseudomonas. The main bacteria in H7 and H10 periods were Flectobacillus and Pseudomonas. The abundance of Pseudomonas was stable at all developmental periods. Node bacteria such as Flectobacillus were significantly associated with the expression of various immune and metabolic genes. This study has obtained the microbial succession information of the early developmental stage of P. chinensis for the first time, and screened out the dominant bacteria and node bacteria, which will provide references and ideas for the scaled cultivation of P. chinensis fry.

Key words: Protosalanx chinensis    early development    microbiota    16S rRNA    transcriptome
收稿日期: 2023-03-28 出版日期: 2024-03-01
CLC:  S917.4  
基金资助: 国家现代农业产业技术体系项目(CARS-46);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助项目(2023TD65);国家农业科学渔业资源环境滨湖观测实验站建设项目(NAES013FS05)
通讯作者: 张希昭,尤洋     E-mail: 18203889079@163.com;zhangxizhao@ffrc.cn;youy@ffrc.cn
作者简介: 周依帆(https://orcid.org/0009-0004-7090-7297),E-mail:18203889079@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周依帆
张希昭
周彦锋
徐东坡
王晨赫
郭世越
蒋书伦
尤洋

引用本文:

周依帆,张希昭,周彦锋,徐东坡,王晨赫,郭世越,蒋书伦,尤洋. 大银鱼早期发育阶段微生物群落特征及其与免疫和代谢的关联[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 123-136.

Yifan ZHOU,Xizhao ZHANG,Yanfeng ZHOU,Dongpo XU,Chenhe WANG,Shiyue GUO,Shulun JIANG,Yang YOU. Characteristics of microbial communities and their association with immunity and metabolism at the early developmental stage of Protosalanx chinensis. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 123-136.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.03.281        https://www.zjujournals.com/agr/CN/Y2024/V50/I1/123

时期 Period

采样时间

Sampling time

肠道内食物

Intestinal food

卵黄囊

Yolk sac

XT心跳期
H1孵化后第1天约占鱼体积的3/4
H4孵化后第4天零星出现约占鱼体积的1/2
H7孵化后第7天轮虫约占鱼体积的1/4
H10孵化后第10天轮虫及桡足类卵黄囊消失
表1  样本详情
图1  大银鱼早期发育阶段5个时期的示意图
图2  5个时期微生物群落的 α 多样性和 β 多样性分析A. α多样性分析的箱线图(使用Kruskal-Wallis方法检验各时期间差异的显著性);B.基于Bray-Curtis距离的非度量多维尺度的β多样性分析。
图3  5个时期的微生物组成(门水平)1~3代表相同时期下的3个重复样本。图4同。
图4  5个时期的微生物组成(属水平)
图5  5个时期微生物群落的KEGG功能分析每个热图代表1个KEGG通路二级分类。每个色块代表每个时期的功能丰度平均值并以行为中心进行缩放,红色代表丰度高,蓝色代表丰度低。
图6  5个时期的微生物关联网络A.微生物模块化网络(每个节点代表1个ASV,节点大小代表ASV的平均相对丰度。红色线段表示节点间呈负相关,蓝色线段表示节点间呈正相关);B.模块化网络的Hub节点分析(Hub得分越高,与其他节点的关联程度就越高)。
图7  5个时期微生物群落基因的KEGG注释及分类结果
图8  微生物群落与免疫通路相关基因的关联网络每个节点代表1个ASV或1个基因,节点的大小代表节点关联度。节点标签表示ASV所属的细菌属名。红色线段表示节点间呈负相关,蓝色线段表示节点间呈正相关。
图9  微生物群落与代谢通路相关基因的关联网络A.碳水化合物代谢、氨基酸代谢、脂质代谢相关基因的维恩图;B.微生物群落和代谢通路相关基因关联网络(每个节点代表1个ASV或基因,节点的大小代表节点关联度。节点标签表示细菌属名或基因名称。红色线段表示节点间呈负相关,蓝色线段表示节点间呈正相关);C.节点关联度大于5的ASVs节点的热图;D.节点关联度大于5的基因节点的热图。
1 唐富江,高文燕,李慧琴,等.大银鱼生物学与渔业生态学研究进展[J].水产学报,2020,44(12):2100-2111. DOI:10.11964/jfc.20200312210
TANG F J, GAO W Y, LI H Q, et al. Biology and fishery ecology of Protosalanx chinensis: a review[J]. Journal of Fisheries of China, 2020, 44(12): 2100-2111. (in Chinese with English abstract)
doi: 10.11964/jfc.20200312210
2 薛以平,吴建广.水库大银鱼种群变动规律及增殖利用初步研究[J].水产养殖,2004(3):37-40. DOI:10.3969/j.issn.1004-2091.2004.03.018
XUE Y P, WU J G. Preliminary study on variation pattern of Protosalanx chinensis population and its proliferation and utilization[J]. Journal of Aquaculture, 2004, 25(3): 37-40. (in Chinese)
doi: 10.3969/j.issn.1004-2091.2004.03.018
3 CHEN T G, WANG Y, GARDNER C, et al. Threats and protection policies of the aquatic biodiversity in the Yangtze River[J]. Journal for Nature Conservation, 2020, 58: 125931. DOI: 10.1016/j.jnc.2020.125931
doi: 10.1016/j.jnc.2020.125931
4 王煜恒,陈军,李华.大银鱼仔鱼的人工培育技术探究[J].南方农业,2021,15(29):178-179. DOI:10.19415/j.cnki.1673-890x.2021.29.080
WANG Y H, CHEN J, LI H. Research on artificial breeding technology of Protosalanx chinensis larvae[J]. South China Agriculture, 2021, 15(29): 178-179. (in Chinese)
doi: 10.19415/j.cnki.1673-890x.2021.29.080
5 ZHANG M L, SHAN C J, TAN F, et al. Gnotobiotic models: powerful tools for deeply understanding intestinal microbiota-host interactions in aquaculture[J]. Aquaculture, 2020, 517: 734800. DOI: 10.1016/j.aquaculture.2019.734800
doi: 10.1016/j.aquaculture.2019.734800
6 WILKINS L G E, FUMAGALLI L, WEDEKIND C. Effects of host genetics and environment on egg-associated micro-biotas in brown trout (Salmo trutta)[J]. Molecular Ecology, 2016, 25(19): 4930-4945. DOI: 10.1111/mec.13798
doi: 10.1111/mec.13798
7 ZHANG Z, YU Y X, JIANG Y, et al. The intestine of artificially bred larval turbot (Scophthalmus maximus) contains a stable core group of microbiota[J]. Archives of Microbiology, 2020, 202(10): 2619-2628. DOI: 10.1007/s00203-020-01984-y
doi: 10.1007/s00203-020-01984-y
8 REKECKI A, DIERCKENS K, LAUREAU S, et al. Effect of germ-free rearing environment on gut development of larval sea bass (Dicentrarchus labrax L.)[J]. Aquaculture, 2009, 293(1/2): 8-15. DOI: 10.1016/j.aquaculture.2009.04.001
doi: 10.1016/j.aquaculture.2009.04.001
9 RAWLS J F, SAMUEL B S, GORDON J I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota[J]. PNAS, 2004, 101(13): 4596-4601. DOI: 10.1073/pnas.0400706101
doi: 10.1073/pnas.0400706101
10 TANG X M, JIANG S L, WANG H L, et al. Transcriptome sequencing analysis reveals dynamic changes in major bio-logical functions during the early development of clearhead icefish, Protosalanx chinensis [J]. Fishes, 2022, 7(3): 115. DOI: 10.3390/fishes7030115
doi: 10.3390/fishes7030115
11 OYARBIDE U, ITURRIA I, RAINIERI S, et al. Use of gnotobiotic zebrafish to study Vibrio anguillarum pathogenicity[J]. Zebrafish, 2015, 12(1): 71-80. DOI: 10.1089/zeb.2014.0972
doi: 10.1089/zeb.2014.0972
12 KANTHER M, SUN X L, MÜHLBAUER M, et al. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract[J]. Gastroenterology, 2011, 141(1): 197-207. DOI: 10.1053/j.gastro.2011.03.042
doi: 10.1053/j.gastro.2011.03.042
13 BOLYEN E, RIDEOUT J R, DILLON M R, et al. Repro-ducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852-857. DOI: 10.1038/s41587-019-0209-9
doi: 10.1038/s41587-019-0209-9
14 马晓娇,薛茗元,孙会增,等.泌乳中期荷斯坦奶牛瘤胃细菌群落组成与多样性变化[J].浙江大学学报(农业与生命科学版),2023,49(4):578-590. DOI:10.3785/j.issn.1008-9209.2022.06.291
MA X J, XUE M Y, SUN H Z, et al. Changes in the com-position and diversity of the rumen bacterial community in mid-lactation Holstein cows[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2023, 49(4): 578-590. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2022.06.291
15 CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581-583. DOI: 10.1038/nmeth.3869
doi: 10.1038/nmeth.3869
16 KATOH K, MISAWA K, KUMA K, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Research, 2002, 30(14): 3059-3066. DOI: 10.1093/nar/gkf436
doi: 10.1093/nar/gkf436
17 PRICE M N, DEHAL P S, ARKIN A P. FastTree2—approxi-mately maximum-likelihood trees for large alignments[J]. PLoS ONE, 2010, 5(3): e9490. DOI: 10.1371/journal.pone.0009490
doi: 10.1371/journal.pone.0009490
18 BOKULICH N A, KAEHLER B D, RIDEOUT J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin[J]. Microbiome, 2018, 6: 90. DOI: 10.1186/s40168-018-0470-z
doi: 10.1186/s40168-018-0470-z
19 WEN T, XIE P H, YANG S D, et al. ggClusterNet: an R package for microbiome network analysis and modularity-based multiple network layouts[J]. iMeta, 2022, 1(3): e32. DOI: 10.1002/imt2.32
doi: 10.1002/imt2.32
20 CHAUCHEYRAS-DURAND F, DURAND H. Probiotics in animal nutrition and health[J]. Beneficial Microbes, 2010, 1(1): 3-9. DOI: 10.3920/BM2008.1002
doi: 10.3920/BM2008.1002
21 PARRIS D J, BROOKER R M, MORGAN M A, et al. Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement[J]. PeerJ, 2016, 4: e2412. DOI: 10.7717/peerj.2412
doi: 10.7717/peerj.2412
22 BAKKE I, COWARD E, ANDERSEN T, et al. Selection in the host structures the microbiota associated with developing cod larvae (Gadus morhua)[J]. Environmental Microbiology, 2015, 17(10): 3914-3924. DOI: 10.1111/1462-2920.12888
doi: 10.1111/1462-2920.12888
23 WANG A R, RAN C, RINGØ E, et al. Progress in fish gastrointestinal microbiota research[J]. Reviews in Aquaculture, 2018, 10(3): 626-640. DOI: 10.1111/raq.12191
doi: 10.1111/raq.12191
24 BARNES M E, BROWN M L. A review of Flavobacterium psychrophilum biology, clinical signs, and bacterial cold water disease prevention and treat[J]. The Open Fish Science Journal, 2011, 4: 40-48. DOI: 10.2174/1874401X01104010040
doi: 10.2174/1874401X01104010040
25 STARLIPER C E. Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum [J]. Journal of Advanced Research, 2011, 2(2): 97-108. DOI: 10.1016/j.jare.2010.04.001
doi: 10.1016/j.jare.2010.04.001
26 LOCH T P, FAISAL M. Flavobacteria colonizing the early life stages of hatchery-incubated Chinook salmon Oncor-hynchus tshawytscha (Walbaum 1792) are markedly diverse[J]. Journal of Fish Diseases, 2018, 41(5): 829-845. DOI: 10.1111/jfd.12795
doi: 10.1111/jfd.12795
27 SATICIOGLU I B, MULET M, DUMAN M, et al. First occurrence and whole-genome comparison of Pseudomonas haemolytica isolated in farmed rainbow trout[J]. Aquaculture Research, 2022, 53(12): 4472-4486. DOI: 10.1111/are.15944
doi: 10.1111/are.15944
28 GONZÁLEZ-PALACIOS C, FREGENEDA-GRANDES J M, ALLER-GANCEDO J M. Possible mechanisms of action of two Pseudomonas fluorescens isolates as probiotics on saprolegniosis control in rainbow trout (Oncorhynchus mykiss Walbaum)[J]. Animals, 2020, 10(9): 1507. DOI: 10.3390/ani10091507
doi: 10.3390/ani10091507
29 GIRI S S, JUN J W, YUN S, et al. Effects of dietary heat-killed Pseudomonas aeruginosa strain VSG2 on immune functions, antioxidant efficacy, and disease resistance in Cyprinus carpio [J]. Aquaculture, 2020, 514: 734489. DOI: 10.1016/j.aquaculture.2019.734489
doi: 10.1016/j.aquaculture.2019.734489
30 ROMERO J, NAVARRETE P. 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch)[J]. Microbial Ecology, 2006, 51(4): 422-430. DOI: 10.1007/s00248-006-9037-9
doi: 10.1007/s00248-006-9037-9
31 NAYAK S K. Role of gastrointestinal microbiota in fish[J]. Aquaculture Research, 2010, 41(11): 1553-1573. DOI: 10.1111/j.1365-2109.2010.02546.x
doi: 10.1111/j.1365-2109.2010.02546.x
32 SEPAHI A, CORDERO H, GOLDFINE H, et al. Symbiont-derived sphingolipids modulate mucosal homeostasis and B cells in teleost fish[J]. Scientific Reports, 2016, 6: 39054. DOI: 10.1038/srep39054
doi: 10.1038/srep39054
33 ZHANG X L, AKHTAR M, CHEN Y, et al. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation[J]. Microbiome, 2022, 10: 107. DOI: 10.1186/s40168-022-01299-8
doi: 10.1186/s40168-022-01299-8
34 STRESSMANN F A, BERNAL-BAYARD J, PEREZ-PASCUAL D, et al. Mining zebrafish microbiota reveals key community-level resistance against fish pathogen infection[J]. The ISME Journal, 2021, 15(3): 702-719. DOI: 10.1038/s41396-020-00807-8
doi: 10.1038/s41396-020-00807-8
[1] 马慧,马海杰,焦晨,李红叶. 不同抗性柑橘对野生型和柑橘链格孢毒素合成受阻褐斑病菌侵染的转录响应差异[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 787-801.
[2] 杨思语,宫子惠,胡仲远,张明方,杨景华. 甜瓜瓜类蚜传黄化病毒侵染响应基因鉴定[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 696-707.
[3] 马晓娇,薛茗元,孙会增,刘建新. 泌乳中期荷斯坦奶牛瘤胃细菌群落组成与多样性变化[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 578-590.
[4] 唐雪梅,周彦锋,方弟安,罗宇婷,张敏莹,蒋书伦,张希昭,彭飞,尤洋. 大银鱼全基因组简单重复序列标记开发及在不同生态型群体中的检验[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 413-423.
[5] 张靳宜,张亚东,MUNAWAR Asim,郑亚强,祝增荣,周文武. 番茄潜麦蛾生物防治研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 141-148.
[6] 金晶,闾怡清,何卫中,疏再发,叶俭慧,梁月荣. 不同遮阴处理对茶树叶片主要植物激素生物合成的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 45-54.
[7] 万清,杨小渔,吴丹,张奇春. 沙棘果渣还田对水稻土性质、温室气体排放和微生物数量的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 483-492.
[8] 巩龙达,陈凯,李丹,蔡梅,王京文,张奇春. 复合钝化剂施用水平对镉污染农田土壤的修复效果[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 359-368.
[9] 祁博文,郭梦兰,卢合均,梅欢,赵汀,方磊. 2个四倍体栽培棉种冷胁迫响应基因的鉴定与比较分析[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 10-20.
[10] 田学凤,姚尧,汤一. 微生物和辐照对普洱生茶贮藏过程中品质转化的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 354-362.
[11] 刘钰莹,张妍,汪哲远,李廷强. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 223-232.
[12] 尤新新,王晟,都林娜. 一种内源性复合微生物菌剂的特性及其固定化对猪场粪污水的处理效果[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 98-106.
[13] 张颖洁,徐鹏飞. 脊椎动物左右不对称发育研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 647-659.
[14] 陈国户,王浩,李广,唐小燕,汪承刚,张磊,侯金锋,袁凌云. 白菜PRX基因家族的鉴定与生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 677-686.
[15] 郭宇燕,张璐,赵心雨,胡东维,梁五生. 照光抑制稻曲病菌菌丝生长的转录组分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 571-581.