Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (5): 571-581    DOI: 10.3785/j.issn.1008-9209.2020.02.012
植物保护     
照光抑制稻曲病菌菌丝生长的转录组分析
郭宇燕(),张璐,赵心雨,胡东维,梁五生()
浙江大学农业与生物技术学院生物技术研究所/农业部作物病虫分子生物学重点实验室,杭州 310058
Transcriptomic analysis of the lighting inhibition on growth of Villosiclava virens mycelia
Yuyan GUO(),Lu ZHANG,Xinyu ZHAO,Dongwei HU,Wusheng LIANG()
Institute of Biotechnology, College of Agriculture and Biotechnology/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2604 KB)   HTML
摘要:

为探究稻曲病菌(Villosiclava virens)菌丝生长的调控因子及其调控机制,将稻曲病菌ZJ09菌株用马铃薯蔗糖琼脂(potato sucrose agar, PSA)平板培养基分别于黑暗和照光(日光灯提供的白光)条件下培养。结果显示:照光能显著抑制菌丝生长,说明光照条件是该菌菌丝生长的一种调控因子。采集上述2组菌丝进行转录组测序,共获得695个差异表达基因(differentially expressed genes, DEGs),其中359个基因在照光后表达上调,336个基因在照光后表达下调。从DEGs中选取6个基因用实时荧光定量聚合酶链式反应(real-time quantitative polymerase chain reaction, RT-qPCR)进行验证,所得结果与转录组测序结果一致。对DEGs进行基因本体(gene ontology, GO)富集分析,结果491个DEGs得到富集,涉及生物过程、细胞成分和分子功能3大类别,说明照光抑制菌丝生长的机制较为复杂。对DEGs进行京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路注释,结果表明:照光抑制菌丝生长主要与核糖体结构和功能,以及氨基酸代谢受到影响有关。DEGs包含1个乙酰辅酶A合成酶编码基因,照光显著抑制该基因表达,据此推测,削弱菌丝的乙酰辅酶A合成能力可能是照光抑制菌丝生长的机制之一。由于UvHOG1UvBI-1这2个基因都不是DEG,因此蛋白激酶HOG1(high osmolarity glycerol 1)和Bax抑制子1可能与照光对菌丝生长的抑制作用无关。

关键词: 稻曲病菌照光转录组差异表达基因    
Abstract:

With the aim of exploring the regulating factors and involved mechanisms for the growth of Villosiclava virens mycelia, a strain (ZJ09) of this fungus was cultured on potato sucrose agar (PSA) plates under dark and lighting (with white light from fluorescents) conditions, respectively, and the growth states of the colonies were compared. A significant inhibitory effect was observed by lighting on the growth of V. virens mycelia, which suggested that lighting condition was a regulating factor for the mycelial growth of this fungus. The mycelial samples of the fungal strain ZJ09 from the dark and lighting groups were collected and their transcriptomes were sequenced, respectively. Six hundred and ninety-five differentially expressed genes (DEGs) caused by lighting were identified, including 359 up-regulated genes and 336 down-regulated ones. Six DEGs were selected out to check by real-time quantitative polymerase chain reaction (RT-qPCR) and the expression results were consistent with those by transcriptomic sequencing. During gene ontology (GO) enrichment analysis, 491 of the 695 DEGs were enriched to the terms of biological process, cellular component and molecular function, indicating that complex mechanisms may be involved in the inhibitory effect of lighting on mycelial growth. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results of the 695 DEGs indicated that influences on the structure and functions of ribosome, and amino acid metabolism were quite probably involved in the inhibitory effect of lighting on mycelial growth. As DEGs included a gene encoding acetyl-coenzyme A synthetase and the lighting condition significantly inhibited its expression, it was inferred that impairing the mycelial acetyl-coenzyme A synthesis ability was one of mechanisms of the inhibitory effect of lighting on mycelial growth. In contrast, as neither of the genes UvHOG1 and UvBI-1 was a DEG, the protein kinase HOG1 (high osmolarity glycerol 1) and Bax inhibitor-1 may both have nothing to do with the inhibitory effect of lighting on mycelial growth.

Key words: Villosiclava virens    lighting    transcriptome    differentially expressed gene
收稿日期: 2020-02-01 出版日期: 2020-11-19
CLC:  S 435.111.46  
基金资助: 浙江省自然科学基金(LY20C140007);国家自然科学基金(31671969)
通讯作者: 梁五生     E-mail: guoyuyan@zju.edu.cn;liangws@zju.edu.cn
作者简介: 郭宇燕(https://orcid.org/0000-0002-7975-4635),E-mail:guoyuyan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭宇燕
张璐
赵心雨
胡东维
梁五生

引用本文:

郭宇燕,张璐,赵心雨,胡东维,梁五生. 照光抑制稻曲病菌菌丝生长的转录组分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 571-581.

Yuyan GUO,Lu ZHANG,Xinyu ZHAO,Dongwei HU,Wusheng LIANG. Transcriptomic analysis of the lighting inhibition on growth of Villosiclava virens mycelia. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 571-581.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.02.012        http://www.zjujournals.com/agr/CN/Y2020/V46/I5/571

序号

No.

基因编号

Gene ID

基因名称

Gene name

引物序列(5′→3′)

Primer sequence (5′→3′)

1UVI_02009420

α微管蛋白-1

α-tubulin-1

F: AGGTTGCGTTGAAGGAGGTT

R: GAGGTGGAGTTGCCGATAAA

2UVI_02055420

二氢硫辛酰胺支链转酰酶

Dihydrolipoamide branched chain transacylase

F: TGTGGTGCTCTTCGGTCTTC

R: GATCCTCTCGGAAACCAGCC

3UVI_02000470

4-羟基苯丙酮酸双加氧酶

4-hydroxyphenylpyruvate dioxygenase

F: CATTGCCCTCCACTTCAGCA

R: CAAAGGCAAACGTGGTGGTG

4UVI_02002140

尿黑酸1,2-二氧酶

Homogentisate 1, 2-dioxygenase

F: GCTCTGCTTGTTTTCGTGCC

R: GGAAGCTGTTCAAGGAGCGT

5UVI_02004190

推定的1,3(4)-β-葡聚糖内切酶

Putative endo-1, 3 (4)-beta-glucanase

F: CGCACCGACGACAATCAA

R: TTGGGACCGAGGGAAGAA

6UVI_02026880

膜整合蛋白

Integral membrane protein

F: AGAAGGCAAGTCACAGCCAA

R: ACCCCGTAGTGCATCAATCG

7UVI_02021740

细胞分裂控制蛋白12

Cell division control protein 12

F: CCTGTCCGACCCCTCG

R: CAGCTGGTGCTGGCTGAC

表1  实时荧光定量PCR试验所用引物
图1  照光对PSA平板上ZJ09菌株菌落生长的影响A.菌落正面;B.菌落背面;C.菌落直径。**表示在P<0.01水平差异有高度统计学意义。
图2  黑暗组与照光组ZJ09菌株菌落状态的比较ZJ09菌株在PSA平板上培养20 d后拍照,菌落内部图片放大倍数为100,菌落边缘图片放大倍数为208。

文库

Library

高质量识别序列

Clean reads

高质量识别序列碱基

Base of clean reads

Q30

模糊碱基N占比

Percentage of

ambiguous base N/%

数量

Number

占比

Percentage/%

数量

Number

占比

Percentage/%

CK_D143 496 29298.826 454 991 96097.776 142 237 0310.001 710
CK_D241 555 41298.716 168 929 66297.695 866 096 2100.001 647
Uv_L144 525 23497.916 639 237 02297.336 358 678 5890.002 933
Uv_L245 389 29298.786 731 516 25497.666 414 065 1090.001 662
表2  转录组输出数据及质量的基本情况

样品

Sample

高质量识别

序列总数

Total number

of clean reads

比对参考基因组的高质量识别序列

Clean reads mapped to

the reference genome

比对到多个位置的

高质量识别序列

Multiply-mapped clean reads

仅比对到一个位置的

高质量识别序列

Uniquely-mapped clean reads

数量

Number

占比

Percentage/%

数量

Number

占比

Percentage/%

数量

Number

占比

Percentage/%

CK_D143 496 29237 712 53686.70600 6821.5937 111 85498.41
CK_D241 555 41235 740 54186.01532 4601.4935 208 08198.51
Uv_L144 525 23438 937 98087.451 100 5602.8337 837 42097.17
Uv_L245 389 29238 928 19485.77626 4001.6138 301 79498.39
表3  过滤后的测序数据与参考基因组序列比对结果
图3  稻曲病菌菌丝差异表达基因的GO富集分析结果

通路注释

Description of pathway

通路ID

Pathway ID

P

P value

差异表达基因数目

Number of DEGs

核糖体 Ribosomeko03010<0.000 00159
缬氨酸、亮氨酸和异亮氨酸降解 Valine, leucine and isoleucine degradationko002800.000 006 9711
酪氨酸代谢 Tyrosine metabolismko003500.000 074 78
赖氨酸生物合成 Lysine biosynthesisko003000.000 7375
谷胱甘肽代谢 Glutathione metabolismko004800.002 277
β-丙氨酸代谢 Beta-alanine metabolismko004100.004 016
半胱氨酸和蛋氨酸代谢 Cysteine and methionine metabolismko002700.004 329
苯丙氨酸代谢 Phenylalanine metabolismko003600.005 826
丙酸盐代谢 Propanoate metabolismko006400.008 176
药物代谢-细胞色素P450 Drug metabolism-cytochrome P450ko009820.011 93
细胞色素P450对异种生物的代谢 Metabolism of xenobiotics by cytochrome P450ko009800.011 93
硒复合代谢 Selenocompound metabolismko004500.011 93
丙酮酸代谢 Pyruvate metabolismko006200.017 17
碳水化合物消化吸收 Carbohydrate digestion and absorptionko049730.021 83
赖氨酸降解 Lysine degradationko003100.043 75
苯乙烯降解 Styrene degradationko006430.051 53
泛醌和其他萜类醌生物合成 Ubiquinone and other terpenoid-quinone biosynthesisko001300.051 53
丁酸盐代谢 Butanoate metabolismko006500.063 44
酮体的合成与降解 Synthesis and degradation of ketone bodiesko000720.065 02
氰基氨基酸代谢 Cyanoamino acid metabolismko004600.071 03
表4  稻曲病菌菌丝差异表达基因的KEGG通路分析结果
图4  转录组数据的RT-qPCR验证编号1~6分别对应表1中编号2~7所代表的基因。FC:差异倍数。转录组测序的FC=(Uv_L1和Uv_L2的平均值)/(CK_D1和CK_D2的平均值)。RT-qPCR的FC值用2-△△CT法计算,所示结果为3次试验的平均值。
1 TANAKA E, ASHIZAWA T, SONODA R, et al. Villosiclava virens gen. nov., comb. nov., teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon, 2008,106:491-501.
2 徐伟东,李冠,陆强,等.水稻稻曲病研究现状及展望. 作物研究,2018,32(1):76-81. DOI:10.16848/j.cnki.issn.1001-5280.2018.01.18
XU W D, LI G, LU Q, et al. Research advances and outlook of rice false smut (Ustilaginoidea virens). Crop Research, 2018,32(1):76-81. (in Chinese with English abstract)
doi: 10.16848/j.cnki.issn.1001-5280.2018.01.18
3 TANG Y X, JIN J, HU D W, et al. Elucidation of the infection process of Ustilaginoidea virens (teleomorph: Villosiclava virens) in rice spikelets. Plant Pathology, 2013,62(1):1-8. DOI:10.1094/PDIS-01-18-0065-RE
doi: 10.1094/PDIS-01-18-0065-RE
4 胡东维,王疏.稻曲病菌侵染机制研究的现状与展望. 中国农业科学,2012,45(22):4604-4611. DOI:10.3864/j.issn.0578-1752.2012.22.006
HU D W, WANG S. Progress and perspectives in infection mechanism of Ustilaginoidea virens. Scientia Agricultura Sinica, 2012,45(22):4604-4611. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2012.22.006
5 FAN J, GUO X Y, LI L, et al. Infection of Ustilaginoidea virens intercepts rice seed formation but activates grain-filling-related genes. Journal of Integrative Plant Biology, 2015,57(6):577-590. DOI:10.1111/jipb.12299
doi: 10.1111/jipb.12299
6 胡东维,梁五生,赖朝晖.稻曲病菌成灾机制与防控技术研究进展. 植物保护,2018,44(1):1-5. DOI:10.16688/j.zwbh.2017491
HU D W, LIANG W S, LAI C H. Advances in the occurrence of rice false smut and its control. Plant Protection, 2018,44(1):1-5. (in Chinese with English abstract)
doi: 10.16688/j.zwbh.2017491
7 武斌,温雪玮,李衫衫,等.稻曲病菌毒素对水稻幼根转录组的影响. 农业生物技术学报,2018,26(7):1093-1106. DOI:10.3969/j.issn.1674-7968.2018.07.001
WU B, WEN X W, LI S S, et al. Influences of mycotoxins of Villosiclava virens on the transcriptome of rice (Oryza sativa) seedling roots. Journal of Agricultural Biotechnology, 2018,26(7):1093-1106. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2018.07.001
8 黄世文,余柳青.国内稻曲病的研究现状. 江西农业学报,2002,14(2):45-51.
HUANG S W, YU L Q. Present situation of studies on rice false smut (Ustilaginoidea virens) in China. Acta Agriculturae Jiangxi, 2002,14(2):45-51. (in Chinese with English abstract)
9 伏荣桃,王剑,卢代华,等.国内外水稻稻曲病研究进展. 中国农学通报,2016,32(12):189-194. DOI:10.11924/j.issn.1000-6850.casb15110037
FU R T, WANG J, LU D H, et al. Research progress of rice false smut (Ustilaginoidea virens) at home and abroad. Chinese Agricultural Science Bulletin, 2016,32(12):189-194. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb15110037
10 FULLER K K, LOROS J J, DUNLAP J C. Fungal photobiology: visible light as a signal for stress, space and time. Current Genetics, 2015,61(3):275-288. DOI:10.1007/s00294-014-0451-0
doi: 10.1007/s00294-014-0451-0
11 郭明敏,杨涛,卜宁,等.大型真菌光受体及其功能研究进展. 菌物学报,2015,34(5):880-889. DOI:10.13346/j.mycosystema.140146
GUO M M, YANG T, BU N, et al. Photoreceptor and its functions in macrofungi: a review. Mycosystema, 2015,34(5):880-889. (in Chinese with English abstract)
doi: 10.13346/j.mycosystema.140146
12 SINGH R A, DUBEY K S. Effect of different treatments on the dormancy of sclerotia of Claviceps Oryzae-sativae. Current Science, 1980,49(3):115-116.
13 董珂,傅淑云.水稻稻曲病菌菌核萌发试验初报. 沈阳农业大学学报,1989,20(3):359-362.
DONG K, FU S Y. Sprouting test on sclerotia of rice false smut. Journal of Shenyang Agricultural University, 1989,20(3):359-362. (in Chinese)
14 FUJITA Y, SONODA R, YAEGASHI H. The fruiting body formation in the sclerotia of Ustilaginoidea viren and the effect by light. Annual Report of the Society of Plant Protection of North Japan, 1990,41:205. (in Japanese with English abstract)
15 YONG M L, DENG Q D, FAN L L, et al. The role of Ustilaginoidea virens sclerotia in increasing incidence of rice false smut disease in the subtropical zone in China. European Journal of Plant Pathology, 2018,150(3):669-677. DOI:10.1007/s10658-017-1312-8
doi: 10.1007/s10658-017-1312-8
16 时婷婷,王忠文,蔡超,等.稻曲病菌薄壁分生孢子制备的影响因素分析. 植物保护,2017,43(1):131-134. DOI:10.3969/j.issn.0529-1542.2017.01.022
SHI T T, WANG Z W, CAI C, et al. Study on factors influencing preparation of thin-walled conidia of Ustilaginoidea virens. Plant Protection, 2017,43(1):131-134. (in Chinese with English abstract)
doi: 10.3969/j.issn.0529-1542.2017.01.022
17 吕锐玲,戴宝生,周强.水稻稻曲病菌的分离技术及培养条件研究. 湖北农业科学,2009,48(10):2425-2427. DOI:10.3969/j.issn.0439-8114.2009.10.029
Lü R L, DAI B S, ZHOU Q. Study on the isolation technique and culture media of Ustilaginoidea virens (Cooke) Tak. Hubei Agricultural Sciences, 2009,48(10):2425-2427. (in Chinese with English abstract)
doi: 10.3969/j.issn.0439-8114.2009.10.029
18 王疏,白元俊,周永力,等.稻曲病菌的病原学. 植物病理学报,1998,28(1):19-24.
WANG S, BAI Y J, ZHOU Y L, et al. The pathogen of false smut of rice. Acta Phytopathologica Sinica, 1998,28(1):19-24. (in Chinese with English abstract)
19 FU R T, YIN C C, LIU Y, et al. The influence of nutrient and environmental factors on mycelium growth and conidium of false smut Villosiclava virens. African Journal of Microbiology Research, 2013,7(9):825-833. DOI:10.5897/AJMR2012.2293
doi: 10.5897/AJMR2012.2293
20 季宏平.稻曲病病原菌分离技术及培养条件初步研究. 黑龙江农业科学,2001(2):26-27.
JI H P. Preliminary study on isolation technique and culture condition of Ustilaginoidea virens (Cke) Tak. Heilongjiong Agricultural Science, 2001(2):26-27. (in Chinese with English abstract)
21 陆凡,陈志谊,陈毓苓,等.稻曲病菌的生物学特性及其侵染循环中某些未确定要点的研究. 江苏农业学报,1996,12(4):35-40.
LU F, CHEN Z Y, CHEN Y L, et al. Studies on biological characters and some uncertain key points relation to infection cycle of rice false smut. Jiangsu Journal of Agricultural Sciences, 1996,12(4):35-40. (in Chinese with English abstract)
22 XIE C, MAO X, HUANG J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 2011, 39(Web Server issue):316-322.
23 顾志敏,丁正中,陈析丰,等.实时荧光定量PCR筛选稻曲病菌内参基因. 中国水稻科学,2012,26(5):615-618. DOI:10.3969/j.issn.1001-7216.2012.05.015
GU Z M, DING Z Z, CHEN X F, et al. Reference gene selection of Ustilaginoidea virens by real-time PCR. Chinese Journal of Rice Science, 2012,26(5):615-618. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2012.05.015
24 胡红,张汝兵,秦杰明,等.乙酰辅酶A合成酶的酶学性质及其在甲羟戊酸合成中的应用. 应用与环境生物学报,2016,22(3):357-362.
HU H, ZHANG R B, QIN J M, et al. Enzymatic characterization of acetyl CoA synthetase and its application in biosynthesis of mevalonate. Chinese Journal of Applied and Environmental Biology, 2016,22(3):357-362. (in Chinese with English abstract)
25 GU Q N, YUAN Q F, ZHAO D, et al. Acetyl-coenzyme A synthetase gene ChAcs1 is essential for lipid metabolism, carbon utilization and virulence of the hemibiotrophic fungus Colletotrichum higginsianum. Molecular Plant Pathology, 2019,20(1):107-123. DOI:10.1111/mpp.12743
doi: 10.1111/mpp.12743
26 BERG M A VAN DEN, STEENSMA H Y. ACS2, a Saccha-romyces cerevisiae gene encoding acetyl-coenzyme essential for growth on glucose. European Journal of Biochemistry, 1995,231:704-713.
27 BREWSTER J L, GUSTIN M C. Hog1: 20 years of discovery and impact. Science Signaling, 2014,7(343):re7. DOI:10.1126/scisignal.2005458
doi: 10.1126/scisignal.2005458
28 DAY A M, QUINN J. Stress-activated protein kinases in human fungal pathogens. Frontiers in Cellular and Infection Microbiology, 2019,9:261. DOI:10.3389/fcimb.2019.00261
doi: 10.3389/fcimb.2019.00261
29 ZHENG D W, WANG Y, HAN Y, et al. UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Scientific Reports, 2016,6(1):24824. DOI:10.1038/srep24824
doi: 10.1038/srep24824
30 CASTILLO K, ROJAS-RIVERA D, LISBONA F, et al. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response. The EMBO Journal, 2011,30(21):4465-4478. DOI:10.1038/emboj.2011.318
doi: 10.1038/emboj.2011.318
31 XIE S L, WANG Y F, WEI W, et al. The Bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus Ustilaginoidea virens. Current Genetics, 2019,65(5):1185-1197. DOI:10.1007/s00294-019-00970-2
doi: 10.1007/s00294-019-00970-2
32 KOU Y J, TAN Y H, RAMANUJAM R, et al. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast. New Phytologist, 2017,214(1):330-342. DOI:10.1111/nph.14347
doi: 10.1111/nph.14347
33 井忠英,王国梁,刘文德.禾谷炭疽菌CFEM效应子的生物信息学鉴定与转录分析. 植物保护,2016,42(1):81-86. DOI:10.3969/j.issn.0529-1542.2016.01.014
JING Z Y, WANG G L, LIU W D. Bioinformatic identification and transcriptional analysis of Colletotrichum graminicola CFEM effector repertoires. Plant Protection, 2016,42(1):81-86. (in Chinese with English abstract)
doi: 10.3969/j.issn.0529-1542.2016.01.014
34 SABNAM N, BARMAN S R. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus. Fungal Genetics and Biology, 2017,105:37-51. DOI:10.1016/j.fgb.2017.05.006
doi: 10.1016/j.fgb.2017.05.006
35 李荔,张克勤,杨金奎.过氧化物酶体与病原真菌的致病性. 微生物学通报,2011,38(6):934-941.
LI L, ZHANG K Q, YANG J K. Peroxisome and pathogenicity of pathogenic fungi. Microbiology, 2011,38(6):934-941. (in Chinese with English abstract)
36 BAHN Y S, XUE C Y, IDNURM A, et al. Sensing the environment: lessons from fungi. Nature Reviews Microbiology, 2007,5(1):57-69. DOI:10.1038/nrmicro1578
doi: 10.1038/nrmicro1578
37 IDNURM A, HOWLETT B J. Characterization of an opsin gene from the ascomycete Leptosphaeria maculans. Genome, 2001,44(2):167-171. DOI:10.1139/g00-113
doi: 10.1139/g00-113
38 BRENNA A, GRIMALDI B, FILETICI P, et al. Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa. Molecular Biology of the Cell, 2012,23(19):3863-3872. DOI:10.1091/mbc.e12-02-0142
doi: 10.1091/mbc.e12-02-0142
[1] 曹璇,郑晓冬. 盐胁迫培养下季也蒙毕赤酵母的转录组学差异分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 400-406.
[2] 王佳堃, 和文凤. 组学技术揭秘草食动物消化道真菌组成和功能[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 131-139.
[3] 朱家颖, 季梅, 杨斌, 泽桑梓. 薇甘菊颈盲蝽多聚半乳糖醛酸酶基因的转录组分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 24-32.
[4] 彭耀耀,侯春晓,詹仪花,黄莹莹,孙翔宇,翁晓燕. RIXI过量表达转基因水稻的全基因组表达谱分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 643-653.
[5] 鲍林飞,王新星,何健瑜,范美华,高鹏,廖智. 基于Illumina平台的厚壳贻贝外套膜转录组从头测序[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 394-406.
[6] 朱乾浩, 丹尼·卢埃林, 印·威尔逊. 高通量测序技术在多倍体作物基因组学研究中的应用(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 355-369.
[7] 周国艳, 胡望雄, 徐建红*, 薛庆中*. 整合多个组学(omics)分析植物代谢产物及其功能[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 237-245.