Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (6): 787-801    DOI: 10.3785/j.issn.1008-9209.2022.12.221
植物保护     
不同抗性柑橘对野生型和柑橘链格孢毒素合成受阻褐斑病菌侵染的转录响应差异
马慧1(),马海杰2,焦晨1,李红叶1()
1.农业农村部作物病虫分子生物学重点实验室/浙江省作物病虫生物学重点实验室/浙江大学农业与生物技术学院, 浙江 杭州 310058
2.农业农村部亚热带果品蔬菜质量安全控制重点实验室/浙江农林大学园艺科学学院, 浙江 杭州 311300
Differential transcriptome analysis of different resistant citrus varieties infected with wild-type and toxin synthesis-impaired strains causing Alternaria brown spot
Hui MA1(),Haijie MA2,Chen JIAO1,Hongye LI1()
1.Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects/Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects/College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Ministry of Agriculture and Rural Affairs Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables/College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
 全文: PDF(2884 KB)   HTML
摘要:

为探讨不同抗性柑橘在与褐斑病菌互作过程中对柑橘链格孢毒素的响应差异,以抗病品种克里曼丁(Citrus clementina Hort. ex Tan. cv. Clementine)和感病品种丹西红橘(Citrus reticulata Blanco cv. Dancy)为材料,分别接种野生型产毒菌株Z7和毒素合成基因ACTT6双敲除突变体菌株ΔΔACTT6,并利用转录组测序技术对接种24 h和48 h后的叶片进行基因表达分析。比较2种柑橘对产毒和不产毒菌株侵染后的转录差异发现,2个品种的先天免疫通路(病原物相关分子模式触发的免疫反应和效应子触发的免疫反应)、病程相关蛋白、WRKY转录因子、次生代谢途径等基因均受产毒菌株诱导表达。在接种后期(48 h),产毒菌株主要激活感病品种的脂质和蛋白质等大分子降解过程,说明其细胞完整性因毒素产生而遭到破坏;而抗病柑橘则主要富集解毒和茉莉酸代谢等生物过程,其中特异激活的多药及毒素化合物外排蛋白(multidrug and toxic compound extrusion protein, MATE)基因与其抵御褐斑病菌毒素的能力有关。本研究初步明确了柑橘对褐斑病菌毒素响应的分子调控机制和关键功能基因,可为柑橘抗褐斑病菌分子育种提供理论依据。

关键词: 柑橘褐斑病链格孢菌橘致病型柑橘链格孢毒素转录组    
Abstract:

To investigate the differences in the response of citrus varieties with different resistances to Alternaria citri toxin (ACT) during interaction with the Alternaria alternata pathotype tangerine causing Alternaria brown spot, we inoculated the wild-type toxin-producing strain Z7 and the ACT synthesis-impaired mutant strain ΔΔACTT6 onto the leaves of resistant variety Clementine (Citrus clementina Hort. ex Tan. cv. Clementine) and the susceptible variety Dancy (Citrus reticulata Blanco cv. Dancy), and analyzed the gene expressions at 24 h and 48 h after inoculation using transcriptome sequencing technology. By comparing the corresponding differences in transcription between the two citrus varieties against the toxin-producing and non-toxin-producing strains, we found that the genes involved in the pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) and effector-triggered immunity (ETI) pathways, pathogenesis-related proteins, WRKY transcription factors, and the secondary metabolic pathway were induced by the toxin-producing strain in both the varieties. At the later stage of inoculation (48 h), the toxin-producing strain mainly activated macromolecular degradation processes such as lipid and protein degradation in the susceptible citrus variety, indicating that its cellular integrity was disrupted due to toxin production, whereas the resistant citrus variety was mainly enriched in biological processes such as detoxification and jasmonic acid metabolism. Some multidrug and toxic compound extrusion protein (MATE) genes were specifically activated in the resistant citrus variety, which implies their ability to resist fungal toxins. In conclusion, the molecular regulatory mechanisms and key functional genes involved in the response of citrus varieties to ACT are preliminarily clarified, which provide a theoretical basis for the molecular breeding of citruses against Alternaria brown spot.

Key words: Alternaria brown spot    Alternaria alternata pathotype tangerine    Alternaria citri toxin    transcriptome
收稿日期: 2022-12-22 出版日期: 2023-12-25
CLC:  S432.1  
基金资助: 国家现代农业(柑橘)产业技术体系建设专项(CARS-26);国家自然科学基金项目(32102148);浙江省重点研发计划项目(2019C02022)
通讯作者: 李红叶     E-mail: huim@zju.edu.cn;hyli@zju.edu.cn
作者简介: 马慧(https://orcid.org/0000-0002-0643-1763),E-mail:huim@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马慧
马海杰
焦晨
李红叶

引用本文:

马慧,马海杰,焦晨,李红叶. 不同抗性柑橘对野生型和柑橘链格孢毒素合成受阻褐斑病菌侵染的转录响应差异[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 787-801.

Hui MA,Haijie MA,Chen JIAO,Hongye LI. Differential transcriptome analysis of different resistant citrus varieties infected with wild-type and toxin synthesis-impaired strains causing Alternaria brown spot. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 787-801.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.12.221        https://www.zjujournals.com/agr/CN/Y2023/V49/I6/787

基因名称

Gene name

基因标识符

Gene ID

引物序列(5→3

Primer sequence (5→3)

几丁质酶基因

Chitinase gene

Cs1g029150

F: TCCAGAACCAGAAAGCAGTCT

R: ACAACTACGGTCCAGCAGGA

通用型调节因子2基因

General regulatory factor 2 gene

Cs3g011250

F: AATTGGCTCCGACTCATCCC

R: GGCCAAATTGCAAGCACGAT

半乳糖基转移酶基因

Galactosyltransferase gene

Cs4g021530

F: CAAGCCAGGACAACATGACTT

R: AGCAGGATCAGAGAACAAGCA

果胶酯酶基因

Pectinesterase gene

Cs4g022700

F: ACCGTCCTTGTTAGTTCGAAT

R: GGCTCAAGATGGAACTGGCA

脂质转移蛋白基因

Lipid-transfer protein gene

Cs4g023990

F: GGTCGACTGGTGGCTTGATC

R: CCCGAAGCACAGGAAACCTA

类甜蛋白基因

Thaumatin-like protein gene

Cs5g040330

F: CTTCGGTCTTGAACACGGGA

R: CCGTGTGATTAGATGTACGGC

肌动蛋白基因(内参基因)

Actin gene (reference gene)

CsActin

F: CATCCCTCAGCACCTTCC

R: CCAACCTTAGCACTTCTCC

表1  用于qRT-PCR验证的基因及引物序列
图1  抗病柑橘克里曼丁和感病柑橘丹西红橘叶片接种后的症状表现A.接种毒素合成基因ACTT6双敲除突变体菌株ΔΔACTT6;B.接种柑橘褐斑病菌野生型菌株Z7。
图2  不同处理组间差异表达基因(DEGs)比较hpi:接种后时间;CM:克里曼丁;DC:丹西红橘;Ai:毒素合成基因ACTT6双敲除突变体菌株诱导;Wi:野生型菌株诱导(下同)。灰色圆点表示没有DEGs;黑色圆点表示独有的DEGs数目;黑色圆点之间的连线表示比较组间共有的DEGs数目。
图3  差异表达基因的GO富集
图4  不同防御反应中的差异表达基因热图PRs:病程相关蛋白;PRRs:模式识别受体;JA:茉莉酸;PAL:苯丙氨酸氨裂合酶;4CL:4-香豆酸-辅酶A连接酶;MATE:多药及毒素化合物外排蛋白;NLRs:核苷酸结合域和富含亮氨酸重复序列蛋白。
图5  差异表达基因的qRT-PCR验证A.野生型菌株诱导;B.毒素合成基因ACTT6双敲除突变体菌株诱导。FC:差异倍数。

通路

标识符

Pathway ID

通路名称

Pathway name

注释基因数

Number of

annotated genes

pp-value
24hpiCM-Wi24hpiCM-Ai48hpiCM-Wi48hpiCM-Ai24hpiDC-Wi24hpiDC-Ai48hpiDC-Wi48hpiDC-Ai
map01120

不同环境中的微生物代谢

Microbial metabolism in diverse

environments

334>0.050>0.050>0.0500.0000.018>0.0500.000>0.050
map04016

植物MAPK信号通路

MAPK signaling pathway—plant

1320.017>0.050>0.050>0.0500.004>0.0500.044>0.050
map01230

氨基酸生物合成

Biosynthesis of amino acids

1940.015>0.050>0.050>0.0500.000>0.0500.000>0.050
map00196

光合作用-天线蛋白

Photosynthesis-antenna proteins

17>0.050>0.050>0.0500.000>0.0500.020>0.0500.001
map04075

植物激素信号转导

Plant hormone signal transduction

2540.016>0.050>0.050>0.050>0.0500.000>0.0500.002
map01200

碳代谢

Carbon metabolism

246>0.050>0.050>0.0500.000>0.050>0.0500.000>0.050
map00480

谷胱甘肽代谢

Glutathione metabolism

117>0.050>0.050>0.050>0.0500.022>0.0500.013>0.050
map00400

苯丙氨酸-酪氨酸-色氨酸生物合成

Phenylalanine, tyrosine and tryptophan

biosynthesis

44>0.050>0.050>0.050>0.0500.000>0.0500.005>0.050
map00966

硫代葡萄糖苷生物合成

Glucosinolate biosynthesis

19>0.050>0.050>0.050>0.0500.019>0.0500.029>0.050
map01210

2-氧代羧酸代谢

2-oxocarboxylic acid metabolism

59>0.050>0.050>0.050>0.0500.022>0.0500.002>0.050
map00980

细胞色素P450对外源性物质的代谢

Metabolism of xenobiotics by

cytochrome P450

79>0.050>0.050>0.050>0.0500.005>0.0500.013>0.050
map00592

α-亚麻酸代谢

Alpha-linolenic acid metabolism

54>0.050>0.050>0.050>0.0500.028>0.0500.001>0.050
map00195

光合作用

Photosynthesis

48>0.050>0.050>0.0500.000>0.050>0.050>0.0500.000
map00640

丙酸盐代谢

Propanoate metabolism

42>0.050>0.050>0.050>0.050>0.050>0.0500.018>0.050
map00330

精氨酸和脯氨酸代谢

Arginine and proline metabolism

51>0.050>0.050>0.050>0.050>0.050>0.0500.044>0.050
map04136

其他自噬

Autophagy-other

32>0.050>0.050>0.050>0.050>0.050>0.0500.001>0.050
map03050

蛋白酶体

Proteasome

43>0.050>0.050>0.050>0.050>0.050>0.0500.000>0.050
map00410

β-丙氨酸代谢

Beta-alanine metabolism

39>0.050>0.050>0.050>0.050>0.050>0.0500.021>0.050
map04024

环腺苷酸信号通路

cAMP signaling pathway

42>0.050>0.050>0.050>0.050>0.050>0.0500.041>0.050
map00280

缬氨酸、亮氨酸和异亮氨酸降解

Valine, leucine and isoleucine

degradation

51>0.050>0.050>0.050>0.050>0.050>0.0500.044>0.050
map00010

糖酵解/糖异生

Glycolysis/gluconeogenesis

114>0.050>0.050>0.050>0.050>0.050>0.0500.001>0.050
map00020

三羧酸循环

Tricarboxylic acid cycle

44>0.050>0.050>0.050>0.050>0.050>0.0500.000>0.050
map00620

丙酮酸代谢

Pyruvate metabolism

97>0.050>0.050>0.050>0.050>0.050>0.0500.044>0.050
map04070

磷脂酰肌醇信号系统

Phosphatidylinositol signaling system

55>0.050>0.050>0.050>0.050>0.050>0.0500.044>0.050
map00071

脂肪酸降解

Fatty acid degradation

47>0.050>0.050>0.050>0.050>0.050>0.0500.004>0.050
map04072

磷脂酶D信号通路

Phospholipase D signaling pathway

34>0.050>0.050>0.050>0.050>0.050>0.0500.038>0.050
map00520

氨基糖和核苷酸糖代谢

Amino sugar and nucleotide sugar

metabolism

108>0.050>0.0500.049>0.050>0.050>0.050>0.050>0.050
map00630

乙醛酸和二羧酸代谢

Glyoxylate and dicarboxylate

metabolism

69>0.050>0.050>0.0500.040>0.050>0.050>0.050>0.050
map00710

光合生物的固碳作用

Carbon fixation in photosynthetic

organisms

65>0.050>0.050>0.0500.000>0.050>0.050>0.050>0.050
map00460

氰基氨基酸代谢

Cyanoamino acid metabolism

50>0.050>0.050>0.050>0.0500.050>0.050>0.050>0.050
map00940

苯丙素类化合物生物合成

Phenylpropanoid biosynthesis

142>0.050>0.050>0.050>0.0500.004>0.050>0.050>0.050
map00905

油菜素甾醇类化合物生物合成

Brassinosteroid biosynthesis

230.013>0.050>0.050>0.050>0.050>0.050>0.050>0.050
表2  差异表达基因的KEGG通路富集
图3  差异表达基因的GO富集BP:生物过程(Biological process)。
1 李红叶,梅秀凤,符雨诗,等.柑橘链格孢褐斑病的发生危害风险和治理对策[J].果树学报,2015,32(5):969-976. DOI:10.13925/j.cnki.gsxb.20140506
LI H Y, MEI X F, FU Y S, et al. Alternaria brown spot of citrus: the risk and management strategy[J]. Journal of Fruit Science, 2015, 32(5): 969-976. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.20140506
2 TSUGE T, HARIMOTO Y, AKIMITSU K, et al. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata [J]. FEMS Microbiology Reviews, 2013, 37(1): 44-66. DOI: 10.1111/j.1574-6976.2012.00350.x
doi: 10.1111/j.1574-6976.2012.00350.x
3 FRIESEN T L, FARIS J D, SOLOMON P S, et al. Host-specific toxins: effectors of necrotrophic pathogenicity[J]. Cellular Microbiology, 2008, 10(7): 1421-1428. DOI: 10.1111/j.1462-5822.2008.01153.x
doi: 10.1111/j.1462-5822.2008.01153.x
4 YANG S L, YU P L, CHUNG K R. The glutathione peroxidase-mediated reactive oxygen species resistance, fungicide sensitivity and cell wall construction in the citrus fungal pathogen Alternaria alternata [J]. Environmental Microbiology, 2016, 18(3): 923-935. DOI: 10.1111/1462-2920.13125
doi: 10.1111/1462-2920.13125
5 CHUNG K R. Stress response and pathogenicity of the necro-trophic fungal pathogen Alternaria alternata [J]. Scientifica, 2012, 2012: 635431. DOI: 10.6064/2012/635431
doi: 10.6064/2012/635431
6 MIYAMOTO Y, ISHII Y, HONDA A, et al. Function of genes encoding acyl-CoA synthetase and enoyl-CoA hydratase for host-selective ACT-toxin biosynthesis in the tangerine pathotype of Alternaria alternata [J]. Phytopathology, 2009, 99(4): 369-377. DOI: 10.1094/PHYTO-99-4-0369
doi: 10.1094/PHYTO-99-4-0369
7 GAI Y P, MA H J, CHEN Y N, et al. Chromosome-scale genome sequence of Alternaria alternata causing Alternaria brown spot of citrus[J]. Molecular Plant-Microbe Interactions, 2021, 34(7): 726-732. DOI: 10.1094/MPMI-10-20-0278-SC
doi: 10.1094/MPMI-10-20-0278-SC
8 SHISHIDO H, MIYAMOTO Y, OZAWA R, et al. Geraniol synthase whose mRNA is induced by host-selective ACT-toxin in the ACT-toxin-insensitive rough lemon (Citrus jambhiri)[J]. Journal of Plant Physiology, 2012, 169(14): 1401-1407. DOI: 10.1016/j.jplph.2012.05.003
doi: 10.1016/j.jplph.2012.05.003
9 YAMASAKI Y, KUNOH H, YAMAMOTO H, et al. Biological roles of monoterpene volatiles derived from rough lemon (Citrus jambhiri Lush) in citrus defense[J]. Journal of General Plant Pathology, 2007, 73(3): 168-179. DOI: 10.1007/s10327-007-0013-0
doi: 10.1007/s10327-007-0013-0
10 DÓRIA M S, GUEDES M S, DE ANDRADE SILVA E M, et al. Comparative proteomics of two citrus varieties in response to infection by the fungus Alternaria alternata [J]. International Journal of Biological Macromolecules, 2019, 136: 410-423. DOI: 10.1016/j.ijbiomac.2019.06.069
doi: 10.1016/j.ijbiomac.2019.06.069
11 唐科志,周常勇.红橘响应褐斑病菌侵染的转录组学分析[J].中国农业科学,2020,53(22):4584-4600. DOI:10.3864/j.issn.0578-1752.2020.22.006
TANG K Z, ZHOU C Y. Transcriptome analysis of Citrus reticulata Blanco cv. Hongjv infected with Alternaria alternata tangerine pathotype[J]. Scientia Agricultura Sinica, 2020, 53(22): 4584-4600. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.22.006
12 WANG M S, SUN X P, YU D L, et al. Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress[J]. Scientific Reports, 2016, 6: 32437. DOI: 10.1038/srep32437
doi: 10.1038/srep32437
13 MA H J, ZHANG B, GAI Y P, et al. Cell-wall-degrading enzymes required for virulence in the host selective toxin-producing necrotroph Alternaria alternata of citrus[J]. Frontiers in Microbiology, 2019, 10: 2514. DOI: 10.3389/fmicb.2019.02514
doi: 10.3389/fmicb.2019.02514
14 BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI: 10.1093/bioinformatics/btu170
doi: 10.1093/bioinformatics/btu170
15 LANGMEAD B, TRAPNELL C, POP M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology, 2009, 10(3): R25. DOI: 10.1186/gb-2009-10-3-r25
doi: 10.1186/gb-2009-10-3-r25
16 KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360. DOI: 10.1038/nmeth.3317
doi: 10.1038/nmeth.3317
17 WANG L, HUANG Y, LIU Z A, et al. Somatic variations led to the selection of acidic and acidless orange cultivars[J]. Nature Plants, 2021, 7: 954-965. DOI: 10.1038/s41477-021-00941-x
doi: 10.1038/s41477-021-00941-x
18 ANDERS S, PYL P T, HUBER W. HTSeq: a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169. DOI: 10.1093/bioinformatics/btu638
doi: 10.1093/bioinformatics/btu638
19 LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. DOI: 10.1186/s13059-014-0550-8
doi: 10.1186/s13059-014-0550-8
20 BUCHFINK B, REUTER K, DROST H G. Sensitive protein alignments at tree-of-life scale using DIAMOND[J]. Nature Methods, 2021, 18(4): 366-368. DOI: 10.1038/s41592-021-01101-x
doi: 10.1038/s41592-021-01101-x
21 ZHENG Y, JIAO C, SUN H H, et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases[J]. Molecular Plant, 2016, 9(12): 1667-1670. DOI: 10.1016/j.molp.2016.09.014
doi: 10.1016/j.molp.2016.09.014
22 GÖTZ S, GARCÍA-GÓMEZ J M, TEROL J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Research, 2008, 36(10): 3420-3435. DOI: 10.1093/nar/gkn176
doi: 10.1093/nar/gkn176
23 KANEHISA M, SATO Y, MORISHIMA K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences[J]. Journal of Molecular Biology, 2016, 428(4): 726-731. DOI: 10.1016/j.jmb.2015.11.006
doi: 10.1016/j.jmb.2015.11.006
24 KLOPFENSTEIN D V, ZHANG L S, PEDERSEN B S, et al. GOATOOLS: a Python library for gene ontology analyses[J]. Scientific Reports, 2018, 8: 10872. DOI: 10.1038/s41598-018-28948-z
doi: 10.1038/s41598-018-28948-z
25 WU T Z, HU E Q, XU S B, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J]. Innovation, 2021, 2(3): 100141. DOI: 10.1016/j.xinn.2021.100141
doi: 10.1016/j.xinn.2021.100141
26 BILGIN D D, ZAVALA J A, ZHU J, et al. Biotic stress globally downregulates photosynthesis genes[J]. Plant, Cell and Environment, 2010, 33(10): 1597-1613. DOI: 10.1111/j.1365-3040.2010.02167.x
doi: 10.1111/j.1365-3040.2010.02167.x
27 JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444: 323-329. DOI: 10.1038/nature05286
doi: 10.1038/nature05286
[1] 杨思语,宫子惠,胡仲远,张明方,杨景华. 甜瓜瓜类蚜传黄化病毒侵染响应基因鉴定[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 696-707.
[2] 金晶,闾怡清,何卫中,疏再发,叶俭慧,梁月荣. 不同遮阴处理对茶树叶片主要植物激素生物合成的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 45-54.
[3] 祁博文,郭梦兰,卢合均,梅欢,赵汀,方磊. 2个四倍体栽培棉种冷胁迫响应基因的鉴定与比较分析[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 10-20.
[4] 陈国户,王浩,李广,唐小燕,汪承刚,张磊,侯金锋,袁凌云. 白菜PRX基因家族的鉴定与生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 677-686.
[5] 郭宇燕,张璐,赵心雨,胡东维,梁五生. 照光抑制稻曲病菌菌丝生长的转录组分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 571-581.
[6] 曹璇,郑晓冬. 盐胁迫培养下季也蒙毕赤酵母的转录组学差异分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 400-406.
[7] 王佳堃, 和文凤. 组学技术揭秘草食动物消化道真菌组成和功能[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 131-139.
[8] 朱家颖, 季梅, 杨斌, 泽桑梓. 薇甘菊颈盲蝽多聚半乳糖醛酸酶基因的转录组分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 24-32.
[9] 彭耀耀,侯春晓,詹仪花,黄莹莹,孙翔宇,翁晓燕. RIXI过量表达转基因水稻的全基因组表达谱分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 643-653.
[10] 鲍林飞,王新星,何健瑜,范美华,高鹏,廖智. 基于Illumina平台的厚壳贻贝外套膜转录组从头测序[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 394-406.
[11] 朱乾浩, 丹尼·卢埃林, 印·威尔逊. 高通量测序技术在多倍体作物基因组学研究中的应用(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 355-369.
[12] 周国艳, 胡望雄, 徐建红*, 薛庆中*. 整合多个组学(omics)分析植物代谢产物及其功能[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 237-245.