Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (4): 400-406    DOI: 10.3785/j.issn.1008-9209.2019.09.091
生物科学与技术     
盐胁迫培养下季也蒙毕赤酵母的转录组学差异分析
曹璇(),郑晓冬()
浙江大学生物系统工程与食品科学学院,杭州 310058
Transcriptomic difference analysis of Meyerozyma guilliermondii in response to salt stress
Xuan CAO(),Xiaodong ZHENG()
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2484 KB)   HTML
摘要:

在本实验室从海南省西沙群岛海沙里分离出1株季也蒙毕赤酵母(Meyerozyma guilliermondii),并证实该酵母菌株有较好的耐盐性,在12% NaCl胁迫培养条件下仍可生长的基础上,本文通过Illumina HiSeqTM高通量测序技术对经盐胁迫培养与非盐胁迫培养24 h的M. guilliermondii进行转录组测序比较。结果表明:2组样品共有 1 027个显著性差异表达基因,其中458个基因表达上调,569个基因表达下调。通过基因本体(gene ontology, GO)功能注释发现,经盐胁迫处理后M. guilliermondii的差异表达基因主要富集在生物过程分类中,其中核苷酸代谢、糖代谢及辅酶代谢基因产生较大差异。对差异基因进行京都基因与基因组百科全书数据库(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路富集分析,发现大部分富集通路都与细胞分裂和代谢有关,与GO富集结果相对应。上述结果可以为盐胁迫培养对M. guilliermondii的生长影响及进一步的生物学探究提供科学依据。

关键词: 季也蒙毕赤酵母盐胁迫转录组学高通量测序    
Abstract:

Previous work proved that a strain of Meyerozyma guilliermondii isolated from the Xisha islands of Hainan Province had good salt-tolerant ability which could grow under 12% NaCl stress culture condition. Based on the above results, the transcriptome sequencing of the straincultured under salt stress and non-salt stress for 24 h was constructed by Illumina HiSeqTM in this study. The results were as follows: the two samples yielded 1 027 significantly differential expression genes, of which 458 genes were up-regulated and 569 genes were down-regulated. According to the gene ontology (GO) functional annotations, the differential expression genes of M. guilliermondii treated with salt stress were mainly concentrated on the classification of biological process, in which nucleotide metabolism, sugar metabolism and coenzyme metabolism genes were greatly different. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differential expression genes showed that the most of the enrichment pathways were related to cell division and metabolism, which were corresponding to the GO enrichment results. The above results can provide scientific basis for further biological research on the effect of the growth of M. guilliermondii under salt stress.

Key words: Meyerozyma guilliermondii    salt stress    transcriptomics    high-throughput sequencing
收稿日期: 2019-09-09 出版日期: 2020-09-11
CLC:  Q 939.9  
基金资助: 国家自然科学基金(31571897);“十三五”国家重点研发计划(2016TFD0401201)
通讯作者: 郑晓冬     E-mail: 452353248@qq.com;xdzheng@zju.edu.cn
作者简介: 曹璇(https://orcid.org/0000-0003-4271-2500),E-mail:452353248@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹璇
郑晓冬

引用本文:

曹璇,郑晓冬. 盐胁迫培养下季也蒙毕赤酵母的转录组学差异分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 400-406.

Xuan CAO,Xiaodong ZHENG. Transcriptomic difference analysis of Meyerozyma guilliermondii in response to salt stress. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 400-406.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.09.091        http://www.zjujournals.com/agr/CN/Y2020/V46/I4/400

基因

Gene

引物序列(5′→3′)

Primer sequence (5′→3′)

ActinF: AGAGACTCCTATGTTGGTGACG
R: GTGTGGTGCCAGATTTTTTC
STE12F: GCCAGCAAACTAAACAACACC
R: CTTGAGGGGGCAAAACATT
RHOAF: AGGAAGATTATGATCGCCTGAG
R: CTAAACTATCAGGGCTGTCGAT
PBS2F: TGCTACTGACATTACGCCG
R: CATTTGGTCTTGTAGGGTGCT
GPD1F: CGCAGCATGAGAATGTCAAATA
R: CCTCGTCTACCCCCTTAATAAG
GRE2F: AATACGCCGCTGATTCTGT
R: TCACTTTGGCAACTCTCCC
FKS2F: AACCTGAAAAGGAAGACGCT
R: ACCACCGAACATTTGAACG
HOG1 (P38)F: CCGCCAAAGGATGTGATAA
R: TGGTAAGGAGCCGAATAAGG
BMH1, 2-YWHAEF: CTGGCGAGTCCAAGGTTTT
R: CTAAGCGAATAGGATGCGTT
SHO1F: CGGTGATAATGCTTCCCCA
R: CGTTGTGTTCCTATTGCCTCTT
STE20-PAK1F: TACTTGGACAGTTACCTCGTGG
R: TGTCTCTGTGAATGACCTGGTT
WSC2F: AGAGCAAAGGCTTGAGTGG
R: AGCAGACGGTGGAATAACAG
CSNKIF: AAAGAGCAGTCACGACGAGA
R: AATCAAGGCGACGAGCATA
表1  实时荧光定量反转录PCR扩增目的基因的引物序列

样品

Sample

原始序列数

Number of raw reads

过滤后序列数

Number of clean reads

过滤后序列大小

Clean base/Gb

错误率

Error rate/%

Q20百分比

Q20 percentage/%

Q30百分比

Q30 percentage/%

0% NaCl_148 174 42647 349 2207.100.0397.7993.63
0% NaCl_264 171 27663 025 4409.450.0397.7593.53
0% NaCl_355 508 27454 553 9248.180.0397.7593.55
12% NaCl_172 376 38271 405 92610.710.0397.8093.66
12% NaCl_272 045 94270 913 32410.640.0397.7393.50
12% NaCl_363 292 49462 087 2529.310.0397.7493.53
表2  数据产出质量情况统计
图1  试验组差异表达基因火山图FC:差异倍数;FDR:校正后的P值。
图2  差异表达基因GO富集柱状图
图3  差异表达基因的KEGG通路富集散点图
图4  基于实时荧光定量反转录PCR(RT-qPCR)的季也蒙毕赤酵母基因转录表达分析FC:差异倍数。
1 YAN Y, ZHANG X Y, ZHENG X F, et al. Control of postharvest blue mold decay in pears by Meyerozyma guilliermondii and its effects on the protein expression profile of pears. Postharvest Biology and Technology, 2018,136:124-131. DOI:10.1016/j.postharvbio.2017.10.016
doi: 10.1016/j.postharvbio.2017.10.016
2 高云慨,张荣意,钟利文,等.1株新分离拮抗酵母菌株对杧果炭疽病生防效果及其分类鉴定.热带生物学报,2015,6(1):47-52.
GAO Y K, ZHANG R Y, ZHONG L W, et al. Classification and identification of a new isolated yeast strain and its biocontrol activity against Anthracnose of mango fruit. Journal of Tropical Biology, 2015,6(1):47-52. (in Chinese with English abstract)
3 丁玥,孟帆,王奎,等.季也蒙毕赤酵母对采后草莓病害控制及冷藏品质的影响.南京农业大学学报,2010,33(4):64-68.
DING Y, MENG F, WANG K, et al. Effects of Pichia guilliermondii on disease control and quality of postharvest strawberry during cold storage. Journal of Nanjing Agricultural University, 2010,33(4):64-68. (in Chinese with English abstract)
4 RANGARAJAN S, SALEENA L M, VASUDEVAN P, et al. Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant and Soil, 2003,251(1):73-82.
5 SIM C S F, CHEOW Y L, NG S L, et al. Biocontrol activities of metal-tolerant endophytes against Ganoderma boninense in oil palm seedlings cultivated under metal stress. Biological Control, 2019,132:66-71. DOI:10.1016/j.biocontrol.2019.02.001
doi: 10.1016/j.biocontrol.2019.02.001
6 SHARMA A, KASHYAP P L, SRIVASTAVA A K, et al. Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits. European Journal of Plant Pathology, 2019,153(3):787-800. DOI:10.1007/s10658-018-1592-7
doi: 10.1007/s10658-018-1592-7
7 WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009,10(1):57-63. DOI:10.1038/nrg2484
doi: 10.1038/nrg2484
8 高弢,史建荣.基于高通量测序技术分析麝香草酚处理禾谷镰孢菌后转录组学的变化.江苏农业学报,2017,33(6):1257-1265. DOI:10.3969/j.issn.1000-4440.2017.01.009
GAO T, SHI J R. Transcriptome analysis of Fusarium graminearum treated with thymol based on high-throughput sequencing technology. Jiangsu Journal of Agricultural Sciences, 2017,33(6):1257-1265. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-4440.2017.01.009
9 鲍林飞,王新星,何健瑜,等.基于Illumina平台的厚壳贻贝外套膜转录组从头测序.浙江大学学报(农业与生命科学版),2015,41(4):394-406. DOI:10.3785/j.issn.1008-9209.2014.12.291
BAO L F, WANG X X, HE J Y, et al. Illumina-based transcriptome sequencing of mussel Mytiluscoruscus mantle. Journal of Zhejiang University (Agriculture and Life Sciences), 2015,41(4):394-406. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2014.12.291
10 宋雪飞,郭晶晶,姜静,等.植物乳杆菌FS5-5在盐胁迫下的转录组学分析.食品科学,2017,38(6):20-26. DOI:10.7506/spkx1002-6630-201706004
SONG X F, GUO J J, JIANG J, et al. Transcriptomic analyses of Lactobacillus plantarum FS5-5 against salt stress. Food Science, 2017,38(6):20-26. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201706004
11 RIO D C, ARES M J, HANNON G J, et al. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010(6):pdb.prot5439. DOI:10.1101/pdb.prot5439
doi: 10.1101/pdb.prot5439
12 GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011,29(7):130-644. DOI:10.1038/nbt.1883
doi: 10.1038/nbt.1883
13 LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001,25(4):402-408. DOI:10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262
14 YOUNG M D, WAKEFIELD M J, SMYTH G K, et al. Gene ontology analysis for RNA-Seq: accounting for selection bias. Genome Biology, 2010,11(2):R14. DOI:10.1186/gb-2010-11-2-r14
doi: 10.1186/gb-2010-11-2-r14
15 KANEHISA M, ARAKI M, GOTO S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008,36(Suppl.Ⅰ):D480-D484. DOI:10.1093/nar/gkm882
doi: 10.1093/nar/gkm882
16 QI Q, GUO Z L, LIANG Y L, et al. Hydrogen sulfide alleviates oxidative damage under excess nitrate stress through MAPK/NO signaling in cucumber. Plant Physiology and Biochemistry, 2019,135:1-8. DOI:10.1016/j.plaphy.2018.11.017
doi: 10.1016/j.plaphy.2018.11.017
17 MANSURI R M, SHOBBAR Z, JELODAR N B, et al. Dissecting molecular mechanisms underlying salt tolerance in rice: a comparative transcriptional profiling of the contrasting genotypes. Rice, 2019,12:13. DOI:10.1186/s12284-019-0273-2
doi: 10.1186/s12284-019-0273-2
18 SHEN L K, ZHUANG B C, WU Q, et al. Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. Plant Science: An International Journal of Experimental Plant Biology, 2019,287:110190. DOI:10.1016/j.plantsci.2019.110190
doi: 10.1016/j.plantsci.2019.110190
19 DING H N, MA D Y, HUANG X, et al. Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiologiae Plantarum, 2019,41:123. DOI:10.1007/s11738-019-2918-6
doi: 10.1007/s11738-019-2918-6
[1] 宋倩倩, 陈雯雯, 唐建军, 于振兴, 丁丽莲, 刘世俊, 任明磊, 陈欣. 土壤盐梯度下根际因子对植物邻体效应的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 601-609.
[2] 王佳堃, 和文凤. 组学技术揭秘草食动物消化道真菌组成和功能[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 131-139.
[3] 梁燕婷, 刘云财, 高云, 王华兵, 徐豫松. 高温条件下桑螟肠道微生物的多样性分析[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 215-222.
[4] 李伟成,杨慧敏,高贵宾,温星,盛海燕. 覆盖对中小径级毛竹林地土壤细菌群落的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 49-58.
[5] 王舒甜,王金平,张金池,岳健敏. 油菜素内酯对盐胁迫下香樟幼苗叶片抗氧化酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 476-482.
[6] 王汐妍,裘波音,刘玉姣,徐晓建,苏文,祝水金,陈进红. 盐胁迫对不同耐盐性棉花幼苗生长与生理及无机离子器官分布的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 273-280.
[7] 王舒甜, 张金池, 张亮. 油菜素内酯对盐胁迫下香樟叶片光合色素以及叶绿素荧光的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 45-53.
[8] 朱乾浩, 丹尼·卢埃林, 印·威尔逊. 高通量测序技术在多倍体作物基因组学研究中的应用(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 355-369.
[9] 林张翔, 王营营, 付菲, 叶楚玉, 樊龙江. 东乡野生稻叶绿体基因组拼接及系统进化分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 397-403.
[10] 叶晓倩, 赵忠辉, 朱全武, 王营营, 林张翔, 叶楚玉, 樊龙江, 须海荣. 茶树“龙井43”叶绿体基因组测序及其系统进化(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 404-412.
[11] 何勇, 朱祝军*. 等渗的Ca(NO3)2和NaCl胁迫对番茄根系呼吸和活性氧代谢的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 396-402.
[12] 周国艳, 胡望雄, 徐建红*, 薛庆中*. 整合多个组学(omics)分析植物代谢产物及其功能[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 237-245.
[13] 吴月燕, 李波, 张燕忠, 崔鹏. 盐胁迫对杜鹃生理生化与叶绿体亚显微结构的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(6): 642-648.
[14] Ganege Don Kapila Kumara,夏宜平,朱祝军,B.M. Vindhya S. Basnayake,Chalinda K.Beneragama. 外源水杨酸对盐胁迫下非洲菊抗氧化酶活性和生理特性的影响[J]. 浙江大学学报(农业与生命科学版), 2010, 36(6): 591-601.
[15] 刘晓红, 黄廷林, 王国栋, 张 钢. 盐胁迫对小麦叶片电阻抗图谱参数的影响[J]. 浙江大学学报(农业与生命科学版), 2009, 35(5): 564-568.