Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (1): 45-54    DOI: 10.3785/j.issn.1008-9209.2021.12.303
园艺科学     
不同遮阴处理对茶树叶片主要植物激素生物合成的影响
金晶1(),闾怡清2,何卫中3,疏再发3,叶俭慧2(),梁月荣2
1.浙江省农业技术推广中心, 浙江 杭州 310000
2.浙江大学农业与生物技术学院, 浙江 杭州 310058
3.丽水市农林科学研究院, 浙江 丽水 323000
Effects of different shade treatments on the biosynthesis of main phytohormones in the leaves of tea plants
Jing JIN1(),Yiqing Lü2,Weizhong HE3,Zaifa SHU3,Jianhui YE2(),Yuerong LIANG2
1.Zhejiang Agricultural Technical Extension Center, Hangzhou 310000, Zhejiang, China
2.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang, China
 全文: PDF(4184 KB)   HTML
摘要:

采用遮阳网覆盖是常见的农艺措施之一,已广泛应用于抹茶生产中。本研究以‘福鼎大白茶’为研究对象,采用黑网、红网、蓝网和黄网遮阴处理茶树以改变茶树生长的光环境(光照强度和光谱组成),以在自然光照条件下生长的茶树为对照组(CK),检测不同遮阴处理下茶树叶片的植物激素水平和转录组谱。结果表明:相较于CK,蓝网遮阴处理可以显著提高茶树叶片中脱落酸、赤霉素类、生长素类、细胞分裂素类、茉莉酸和水杨酸等激素含量,其次为黄网、黑网和红网遮阴处理。转录组测序结果表明,相较于CK,黑网遮阴处理茶样的差异表达基因条数最多(上调3 422条,下调4 074条),然后依次是蓝网(上调476条,下调1 271条)、黄网(上调663条,下调994条)、红网(上调723条,下调810条)。京都基因与基因组百科全书通路富集结果表明,蓝网遮阴处理组与CK比较组中,光合作用-天线蛋白和植物激素信号转导2条通路被显著富集,主要体现在捕光复合物和植物激素信号合成通路相关基因表达明显上调。由此可见,覆盖遮阴可以改变茶树生长的光环境并调节茶树叶片植物激素合成,从而影响茶树新梢生育。

关键词: 茶树遮阴处理植物激素转录组分析生物合成    
Abstract:

Shade net covering is a conventional agronomic practice, which has been widely applied in the production of matcha. The present study used different shade treatments (black, red, blue, and yellow shade net treatments) to alter the light conditions (including light intensity and spectral composition) for the growth of tea plants, and investigated the effects of different shade treatments on the phytohormone levels and transcriptome profiles of the leaves of ‘Fuding white tea’ plants, with taking the tea plants grown under the natural light conditions as the control group (CK). The results showed that blue shade net treatment significantly increased the contents of abscisic acid, gibberellins, auxins, cytokinins, jasmonic acid, and salicylic acid in the tea leaves compared with CK, followed by yellow, black, and red shade net treatments. The transcriptome sequencing results showed that the most abundant number of differentially expressed genes (DEGs) was observed under the black shade net treatment (3 422 up-regulation, and 4 074 down-regulation) compared with CK, subsequently followed by blue shade net treatment (476 up-regulation, and 1 271 down-regulation), and yellow shade net treatment (663 up-regulation, and 994 down-regulation), while the lowest DEGs number was observed under the red shade net treatment (723 up-regulation, and 810 down-regulation). The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that photosynthesis-antenna proteins as well as plant hormone signal transduction were the significantly enriched pathways in the pair of blue shade net treatment and CK. Especially, the expressions of light-harvesting complex and phytohormone biosynthesis-related genes were greatly up-regulated. Thus, shade net treatments could regulate the biosynthesis of phytohormones in tea plants through altering the light condition underneath, and further affect the growth of tea young shoots.

Key words: Camellia sinensis    shade treatment    phytohormones    transcriptome analysis    biosynthesis
收稿日期: 2021-12-30 出版日期: 2023-03-07
CLC:  S571.1  
基金资助: 浙江省农业重大技术协同推广项目(2020XTTGCY04);浙江省“三农六方”科技协作项目(2021SNLF014);浙江省农业(茶树)新品种选育重大科技专项(2021C02067-5-1)
通讯作者: 叶俭慧     E-mail: zdcxjj@126.com;jianhuiye@zju.edu.cn
作者简介: 金晶(https://orcid.org/0000-0001-7930-571X),E-mail:zdcxjj@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
金晶
闾怡清
何卫中
疏再发
叶俭慧
梁月荣

引用本文:

金晶,闾怡清,何卫中,疏再发,叶俭慧,梁月荣. 不同遮阴处理对茶树叶片主要植物激素生物合成的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 45-54.

Jing JIN,Yiqing Lü,Weizhong HE,Zaifa SHU,Jianhui YE,Yuerong LIANG. Effects of different shade treatments on the biosynthesis of main phytohormones in the leaves of tea plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 45-54.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.12.303        https://www.zjujournals.com/agr/CN/Y2023/V49/I1/45

图1  不同遮阳网覆盖处理
图2  不同遮阴处理下茶树叶片激素含量热图(A)和基于激素组成的PCA得分图(B)CK:对照组;AN:黑网遮阴处理组;RN:红网遮阴处理组;BN:蓝网遮阴处理组;YN:黄网遮阴处理组。下同。
图3  不同遮阴处理下茶树叶片转录组PCA得分图(A)和比较组间差异表达基因数量(B)
图4  不同比较组间差异表达基因的KEGG显著富集通路
图5  不同遮阴处理下茶树叶片光合作用至激素生物合成通路关键节点网络图CAB:叶绿素a/b结合蛋白;NADPH:烟酰胺腺嘌呤二核苷酸磷酸;RBCS-3B:核酮糖二磷酸羧化酶小链3B;FBA2:果糖-二磷酸醛缩酶2;FBA:果糖-二磷酸醛缩酶;DHQS:3-脱氢奎尼酸合成酶;SD2:莽草酸脱氢酶2;SD3:莽草酸脱氢酶3;DXPS:1-脱氧木酮糖-5-磷酸合成酶;ALDH:乙醛脱氢酶;ODD:酮戊二酸双加氧酶;GA2OX8:赤霉素2-氧化酶8。
图6  吲哚乙酸生物合成途径iaaM:色氨酸2-单加氧酶;amiE:酰胺酶;DDC:芳香族L-氨基酸脱羧酶;TD:色氨酸脱羧酶;MAO:单胺氧化酶;DO:二氨氧化酶;ALDH:乙醛脱氢酶;ALDH7A1:乙醛脱氢酶7A1;TAR:色氨酸-丙酮酸氨基转移酶;IPM:吲哚-3-丙酮酸单加氧酶。
1 BLÁZQUEZ M A, NELSON D C, WEIJERS D. Evolution of plant hormone response pathways[J]. Annual Review of Plant Biology, 2020, 71: 327-353. DOI: 10.1146/annurev-arplant-050718-100309
doi: 10.1146/annurev-arplant-050718-100309
2 BERENS M L, BERRY H M, MINE A, et al. Evolution of hormone signaling networks in plant defense[J]. Annual Review of Phytopathology, 2017, 55(1): 401-425. DOI: 10.1146/annurev-phyto-080516-035544
doi: 10.1146/annurev-phyto-080516-035544
3 WU Y S, GONG W Z, YANG W Y. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean[J]. Scientific Reports, 2017, 7: 9259. DOI: 10.1038/s41598-017-10026-5
doi: 10.1038/s41598-017-10026-5
4 JIANG Z, WANG Y, ZHENG Y, et al. Physiological and transcriptomic responses of Mikania micrantha stem to shading yield novel insights into its invasiveness[J]. Biological Invasions, 2021, 23(9): 2927-2943. DOI: 10.1007/s10530-021-02546-z
doi: 10.1007/s10530-021-02546-z
5 李晓慧,班甜甜,王青青,等.不同LED补光时长对甘蓝幼苗内源激素含量的影响[J].分子植物育种,2021,20(19):6512-6521. DOI:10.13271/j.mpb.020.006512
LI X H, BAN T T, WANG Q Q, et al. Effects of different LED supplement light duration on endogenous hormones content of cabbage seedings[J]. Molecular Plant Breeding, 2021, 20(19): 6512-6521. (in Chinese with English abstract)
doi: 10.13271/j.mpb.020.006512
6 雷桓,陈慧仁,余丹,等.不同光质照射对绿豆种子萌发及内源激素的影响[J].湖南农业科学,2020(11):24-26, 39. DOI:10.16498/j.cnki.hnnykx.2020.011.008
LEI H, CHEN H R, YU D, et al. Effects of different wavelengh lights on germination and endogenous hormones of mung bean (Vigna radiate) seeds[J]. Hunan Agricultural Sciences, 2020(11): 24-26, 39. (in Chinese with English abstract)
doi: 10.16498/j.cnki.hnnykx.2020.011.008
7 郭子钰.光质对家独行菜挥发性成分及生理生化指标变化的影响[D].吉林,延边:延边大学,2020.
GUO Z Y. Effects of light quality on volatile components and physiological and biochemical indexes of Lepidium sativum L.[D]. Yanbian, Jilin: Yanbian University, 2020. (in Chinese with English abstract)
8 谢佐沐,蔡英健,余若莹,等.不同光质补光对火龙果茎生理特性及开花结果的影响[J].广西植物,2022,42(2):191-198. DOI:10.11931/guihaia.gxzw202010035
XIE Z M, CAI Y J, YU R Y, et al. Effects of different supplemental light qualities on physiological characteristics, flowering and fruiting of pitaya stem[J]. Guihaia, 2022, 42(2): 191-198. (in Chinese with English abstract)
doi: 10.11931/guihaia.gxzw202010035
9 刘帅,徐伟荣,张亚红,等.基于转录组研究补光对设施‘红地球’葡萄萌芽的影响[J].果树学报,2021,38(3):305-317. DOI:10.13925/j.cnki.gsxb.20200449
LIU S, XU W R, ZHANG Y H, et al. Effects of supplementary light on the bud burst of ‘Red Globe’ grape under protected cultivation based on transcriptome sequencing[J]. Journal of Fruit Science, 2021, 38(3): 305-317. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.20200449
10 陈思肜.红蓝光对茶树生长及其代谢产物的影响[D].福建,福州:福建农林大学,2020.
CHEN S R. Effects of red and blue light on the growth and metabolites of tea[D]. Fuzhou, Fujian: Fujian Agriculture and Forestry University, 2020. (in Chinese with English abstract)
11 田月月.黄金芽茶树叶色响应光质的生理特性及机制研究[D].山东,泰安:山东农业大学,2020. DOI:10.1016/j.scienta.2019.03.032
TIAN Y Y. Mechanism of physiological characteristic of leaf color in Camellia sinensis cv. Huangjinya response to light quality[D]. Tai’an, Shandong: Shandong Agricultural University, 2020. (in Chinese with English abstract)
doi: 10.1016/j.scienta.2019.03.032
12 HAO X Y, LI L T, HU Y R, et al. Transcriptomic analysis of the effects of three different light treatments on the biosynthesis of characteristic compounds in the tea plant by RNA-Seq[J]. Tree Genetics & Genomes, 2016, 12(6): 1-10. DOI: 10.1007/s11295-016-1071-2
doi: 10.1007/s11295-016-1071-2
13 JIN J, LÜ Y Q, HE W Z, et al. Screening the key region of sunlight regulating the flavonoid profiles of young shoots in tea plants (Camellia sinensis L.) based on a field experiment[J]. Molecules, 2021, 26(23): 7158. DOI: 10.3390/molecules26237158
doi: 10.3390/molecules26237158
14 YE J H, LÜ Y Q, LIU S R, et al. Effects of light intensity and spectral composition on the transcriptome profiles of leaves in shade grown tea plants (Camellia sinensis L.) and regulatory network of flavonoid biosynthesis[J]. Molecules, 2021, 26(19): 5836. DOI: 10.3390/molecules26195836
doi: 10.3390/molecules26195836
15 SHAH A, MATHUR Y, HAZRA A B. Double agent indole-3-acetic acid: mechanistic analysis of indole-3-acetaldehyde dehydrogenase AldA that synthesizes IAA, an auxin that aids bacterial virulence[J]. Bioscience Reports, 2021, 41(8): BSR20210598. DOI: 10.1042/BSR20210598
doi: 10.1042/BSR20210598
16 PRASETYANINGRUM P, MARIOTTI L, VALERI M C, et al. Nocturnal gibberellin biosynthesis is carbon dependent and adjusts leaf expansion rates to variable conditions[J]. Plant Physiology, 2021, 185(1): 228-239. DOI: 10.1093/plphys/kiaa019
doi: 10.1093/plphys/kiaa019
17 SHIRAIWA N, KIKUCHI K, HONDA I, et al. Characterization of endogenous gibberellins and molecular cloning of a putative gibberellin 3-oxidase gene in bunching onion[J]. Journal of the American Society for Horticultural Science, 2011, 136(6): 382-388. DOI: 10.21273/jashs.136.6.382
doi: 10.21273/jashs.136.6.382
18 TAKEI K, YAMAYA T, SAKAKIBARA H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin[J]. Journal of Biological Chemistry, 2004, 279(40): 41866-41872. DOI: 10 .1074/jbc.M406337200
doi: 10
19 KUREPIN L V, WALTON L J, REID D M, et al. Light regulation of endogenous salicylic acid levels in hypocotyls of Helianthus annuus seedlings[J]. Botany, 2010, 88(7): 668-674. DOI: 10.1139/B10-042
doi: 10.1139/B10-042
20 MOHAMED F H, OMAR G F, ISMAIL M A. In vitro regeneration, proliferation and growth of strawberry under different light treatments[J]. Acta Horticulturae, 2017, 1155: 361-368. DOI: 10.17660/ActaHortic.2017.1155.53
doi: 10.17660/ActaHortic.2017.1155.53
21 LIU L L, LIN N, LIU X Y, et al. From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves[J]. Frontiers in Plant Science, 2020, 11: 256. DOI: 10.3389/fpls.2020.00256
doi: 10.3389/fpls.2020.00256
22 ZHENG C, MA J, MA C L, et al. Regulation of growth and flavonoid formation of tea plants (Camellia sinensis) by blue and green light[J]. Journal of Agricultural and Food Chemistry, 2019, 67(8): 2408-2419. DOI: 10.1021/acs.jafc.8b07050
doi: 10.1021/acs.jafc.8b07050
23 陈笛,郭永春,陈雪津,等.红蓝光调控茉莉开花的转录组分析[J].生物工程学报,2020,36(9):1869-1886. DOI:10.13345/j.cjb.190579
CHEN D, GUO Y C, CHEN X J, et al. Transcriptome analysis of flowering regulated by red and blue light in Jasminum sambac [J]. Chinese Journal of Biotechnology, 2020, 36(9): 1869-1886. (in Chinese with English abstract)
doi: 10.13345/j.cjb.190579
24 UENO Y, AIKAWA S, KONDO A, et al. Adaptation of light-harvesting functions of unicellular green algae to different light qualities[J]. Photosynthesis Research, 2019, 139(1/2/3): 145-154. DOI: 10.1007/s11120-018-0523-y
doi: 10.1007/s11120-018-0523-y
25 LIANG X J, ZHONG C H, TANG L C, et al. Exploration on long-term acclimation of Pyropia haitanensis thalli to monochromatic lights based on physiological characteristics and transcriptome analysis[J]. Journal of Applied Phycology, 2021, 34(1): 565-576. DOI: 10.1007/s10811-021-02626-6
doi: 10.1007/s10811-021-02626-6
26 DE WIT M, GALVAO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development[J]. Annual Review of Plant Biology, 2016, 67: 513-537. DOI: 10.1146/annurev-arplant-043015-112252
doi: 10.1146/annurev-arplant-043015-112252
27 樊小雪,宋波,徐海,等.LED光源对不结球白菜和番茄内源激素含量的影响[J].浙江农业学报,2015,27(11):1927-1931. DOI:10.3969/j.issn.1004-1524.2015.11.11
FAN X X, SONG B, XU H, et al. Effects of light-emitting diodes on contents of endogenous hormones in non-heading Chinese cabbage and tomato[J]. Acta Agriculturae Zhejiang-ensis, 2015, 27(11): 1927-1931. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-1524.2015.11.11
28 MIRA M M, WALLY O S D, ELHITI M, et al. Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin[J]. Journal of Experimental Botany, 2016, 67(8): 2231-2246. DOI: 10.1093/jxb/erw022
doi: 10.1093/jxb/erw022
29 HUANG X, ZHANG Q, JIANG Y P, et al. Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in Arabidopsis [J]. eLife, 2018, 7: e31636. DOI: 10.7554/eLife.31636
doi: 10.7554/eLife.31636
30 HISAMATSU T, KING R W, HELLIWELL C A, et al. The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis [J]. Plant Physiology, 2005, 138(2): 1106-1116. DOI: 10.1104/pp.104.059055
doi: 10.1104/pp.104.059055
31 CASAL J J. Photoreceptor signaling networks in plant responses to shade[J]. Annual Review of Plant Biology, 2013, 64: 403-427. DOI: 10.1146/annurev-arplant-050312-120221
doi: 10.1146/annurev-arplant-050312-120221
32 WANG Q, LIN C T. Mechanisms of cryptochrome-mediated photoresponses in plants[J]. Annual Review of Plant Biology, 2020, 71: 103-129. DOI: 10.1146/annurev-arplant-050718-100300
doi: 10.1146/annurev-arplant-050718-100300
[1] 陈海天,周学军,沙军静,李晓丽,王瑾,何勇. 铅气溶胶胁迫下茶树叶片生理生化指标变化及光谱快速检测[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 117-128.
[2] 李艾凝,姜百惠,李桂新,丁忠杰,郑绍建. 乙烯调控植物营养缺乏胁迫响应的分子机制[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 14-22.
[3] 黄艳梅,周菲菲,罗立民,黄海涛,葛志伟,杨江帆,屠幼英,吴媛媛. 茶树2种酰基化黄酮苷的分布规律及加工变化特性研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 573-582.
[4] 陈莲芙,任苧,陈益,屠幼英. 茶树花皂苷对卵巢癌干细胞样细胞增殖的影响及机制[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 667-676.
[5] 陈国户,王浩,李广,唐小燕,汪承刚,张磊,侯金锋,袁凌云. 白菜PRX基因家族的鉴定与生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 677-686.
[6] 李金,陈莲芙,金恩惠,李博,屠幼英. 不同茶树品种的茶树花黄酮苷研究[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 707-714.
[7] 王鹏杰,岳川,陈笛,郑玉成,郑知临,林浥,杨江帆,叶乃兴. 茶树CsWRKY6CsWRKY31CsWRKY48基因的分离及表达分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 30-38.
[8] 伍梦瑶,黄莹捷,姚燕妮,黄友谊. 勐库大叶种茶树多酚氧化酶粗酶的酶学性质[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 579-588.
[9] 侯玲,沈娴,陈琳,金恩惠,吴媛媛,屠幼英. 茶树花蛋白质碱提和酶提工艺优化及其功能性质[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 442-450.
[10] 杨节, 龚淑英*, 唐德松. 茶树中过氧化氢酶活力变化规律[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 647-652.
[11] 张敏1,2, 陈永根3, 于翠平1, 潘志强1, 范冬梅1, 骆耀平1, 王校常1*. 在茶园生产周期过程中茶树群落生物量和碳储量动态估算[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 687-694.
[12] 孙世利, 骆耀平. 壳聚糖对茶树抗性酶调节作用的研究[J]. 浙江大学学报(农业与生命科学版), 2009, 35(1): 84-88.
[13] 骆耀平 唐萌 任明兴 . 壳聚糖对茶树氮代谢影响[J]. 浙江大学学报(农业与生命科学版), 2007, 33(3): 298-301.
[14] 王强  阮晓  颜启传. 植物激素调节和预先冷处理对破除红景天种子休眠和发芽的影响[J]. 浙江大学学报(农业与生命科学版), 2005, 31(4): 423-432.
[15] 潘延云  郭毅  赵军峰  孙大业. 乙烯在植物中的信号转导 [J]. 浙江大学学报(农业与生命科学版), 2003, 29(4): 453-460.