Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (1): 117-128    DOI: 10.3785/j.issn.1008-9209.2022.01.111
农业工程     
铅气溶胶胁迫下茶树叶片生理生化指标变化及光谱快速检测
陈海天1(),周学军2,沙军静1,李晓丽1(),王瑾2(),何勇1
1.浙江大学生物系统工程与食品科学学院/农业农村部光谱检测重点实验室, 浙江 杭州 310058
2.浙江省产品质量安全科学研究院, 浙江 杭州 310018
Changes of physiological and biochemical indexes of tea plant leaves under lead aerosol stress and their rapid spectral detection
Haitian CHEN1(),Xuejun ZHOU2,Junjing SHA1,Xiaoli LI1(),Jin WANG2(),Yong HE1
1.College of Biosystems Engineering and Food Science, Zhejiang University/Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, Zhejiang, China
2.Zhejiang Institute of Product Quality and Safety Science, Hangzhou 310018, Zhejiang, China
 全文: PDF(2457 KB)   HTML
摘要:

茶树作为多年生叶用植物,在铅气溶胶胁迫下的生理生化指标变化和铅累积效应亟待研究。本文以铅气溶胶方式模拟大气污染环境,研究‘乌牛早’与‘迎霜’2个品种茶树在铅气溶胶胁迫下根、茎、叶各器官的铅累积情况以及叶片中光合色素和抗氧化物的变化规律,并结合傅里叶变换红外(Fourier transform infrared, FTIR)光谱技术建立各指标的快速检测模型。结果表明:在正常环境条件下茶树叶片的铅含量极少,符合食品安全国家标准,根的铅含量远高于叶,证明在正常环境条件下土壤-根途径是茶树积累铅的主要途径。随着胁迫时间的延长,高质量浓度铅胁迫组叶片的铅含量显著高于茎和根,证明存在大气-叶面吸收途径,高质量浓度铅胁迫组叶片中铅含量最高可达无铅处理组的14倍;在胁迫试验的42 d中,叶片的光合色素含量与抗坏血酸含量在胁迫的前中期不断增加,而在胁迫的中后期不断减少,谷胱甘肽含量整体处于上升趋势。分别采用支持向量机(support vector machine, SVM)与人工神经网络(artificial neural network, ANN)建立了基于中红外光谱特征波段的生理生化指标定量预测模型,两者均可实现铅气溶胶胁迫下茶树生理生化指标的快速检测,并且ANN模型的效果普遍优于SVM模型。其中,叶绿素a的ANN定量模型得到了最佳预测效果,在预测集中的相关系数可达0.810,均方根误差可达0.032 mg/g。综上所述,铅气溶胶胁迫会导致茶树体内铅的累积以及生理生化指标的显著变化,基于FTIR光谱技术可实现茶树生理生化指标的快速检测,有望构建茶树受铅气溶胶胁迫的快速诊断方法。

关键词: 铅气溶胶茶树光合色素抗氧化物红外光谱    
Abstract:

As a perennial foliage plant, the changes of physiological and biochemical indexes of tea plant under lead aerosol stress and the lead accumulation effect need to be studied urgently. In the present study, the lead aerosol was used to simulate atmospheric pollution, and the lead accumulation in roots, stems, and leaves as well as the changes of photosynthetic pigments and antioxidants in leaves of ‘Wuniuzao’ and ‘Yingshuang’ tea plants were evaluated. Then the model for the rapid detection of each index was established based on Fourier transform infrared (FTIR) spectroscopy. The results showed that the lead content of tea plant leaves in the normal environment was very low, which met the national food safety standards. The lead content of roots was much higher than that of leaves, which proved that the soil-root pathway was the main way for tea plants to accumulate lead in the normal environment. With the increase of stress time, the lead content in the leaves of high concentration lead stress group was significantly higher than that in the stems and roots, which proved that there was an air-leaf absorption pathway, and high concentration lead stress group was up to 14 times that of no lead treatment group. In addition, the photosynthetic pigment and ascorbic acid contents increased initially and then decreased, whereas glutathione content basically increased during the entire 42 days. Support vector machine (SVM) and artificial neural network (ANN) were used to establish quantitative prediction models for monitoring the physiological and biochemical indexes based on the characteristic wave-band of the mid-infrared spectrum, proving that the mid-infrared spectrum could be a potential approach for the rapid detection of physiological and biochemical indexes in tea plants under the lead aerosol stress, and the ANN model showed better effects than the SVM model. The ANN quantitative model of chlorophyll a obtained the best prediction effect, of which the best correlation coefficient of prediction set (rp) could reach 0.810, and the root-mean-square error of prediction set (RMSEp) was 0.032 mg/g. The above results indicate that lead aerosol stress could cause the accumulation of lead and result in the significant changes of physiological and biochemical indexes in tea plants, and the FTIR spectroscopy is a reliable method for the rapid detection of physiological and biochemical indexes in tea plants under the lead aerosol stress.

Key words: lead aerosol    tea plant    photosynthetic pigment    antioxidant    infrared spectroscopy
收稿日期: 2022-01-11 出版日期: 2023-03-07
CLC:  S571.1  
基金资助: 国家自然科学基金项目(31771676)
通讯作者: 李晓丽,王瑾     E-mail: 21913053@zju.edu.cn;xiaolili@zju.edu.cn;wjin_920@163.com
作者简介: 陈海天(https://orcid.org/0000-0002-3538-0870),E-mail:21913053@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈海天
周学军
沙军静
李晓丽
王瑾
何勇

引用本文:

陈海天,周学军,沙军静,李晓丽,王瑾,何勇. 铅气溶胶胁迫下茶树叶片生理生化指标变化及光谱快速检测[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 117-128.

Haitian CHEN,Xuejun ZHOU,Junjing SHA,Xiaoli LI,Jin WANG,Yong HE. Changes of physiological and biochemical indexes of tea plant leaves under lead aerosol stress and their rapid spectral detection. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 117-128.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.01.111        https://www.zjujournals.com/agr/CN/Y2023/V49/I1/117

图1  在不同质量浓度铅气溶胶胁迫过程中茶树不同器官的铅含量变化A.‘乌牛早’;B.‘迎霜’。CK:0 μg/m3铅气溶胶处理组;LP:100 μg/m3铅气溶胶处理组;HP:500 μg/m3铅气溶胶处理组(下同)。
图2  在不同质量浓度铅气溶胶胁迫过程中茶树叶片叶绿素a、叶绿素b和类胡萝卜素含量的变化A~C.‘乌牛早’;D~F.‘迎霜’。短栅上不同小写字母表示不同处理间在P<0.05水平差异有统计学意义(下同)。
图3  在不同质量浓度铅气溶胶胁迫过程中茶树叶片抗坏血酸和谷胱甘肽含量的变化A~B.‘乌牛早’;C~D.‘迎霜’。
图4  在不同质量浓度铅气溶胶胁迫第42天时茶树鲜叶的平均FTIR光谱A.‘乌牛早’;B.‘迎霜’。
图5  第42天茶树鲜叶的平均FTIR光谱与不同质量浓度铅气溶胶胁迫间的方差分析结果

指标

Index

预处理方法

Pretreatment method

建模结果 Modeling result
rcRMSEcrvRMSEvrpRMSEp

叶绿素a

Chl a

SNV0.8290.1500.7790.1680.5260.240
MSC0.7600.1920.7060.2120.6120.224
SG0.7360.1900.6640.2110.5400.238

叶绿素b

Chl b

SNV0.7620.0850.6980.0940.6350.105
MSC0.7750.0830.7180.0920.5970.109
SG0.6980.0940.5870.1070.6380.105

类胡萝卜素

Car

SNV0.6720.0370.5750.0410.4970.045
MSC0.6770.0360.5820.0410.5280.045
SG0.6470.0380.5750.0400.4060.048

抗坏血酸

ASA

SNV0.6961.1140.6371.2030.5121.460
MSC0.6571.1670.6001.2500.5331.437
SG0.6091.2540.4961.3870.5421.427

谷胱甘肽

GSH

SNV0.6384.1610.5454.5720.4447.905
MSC0.6434.1560.5644.5340.4577.843
SG0.6204.1520.5044.5820.4527.872
表1  基于不同预处理方法的全波段PLS建模结果

指标

Index

建模方法

Modeling method

建模结果 Modeling result
rcRMSEcrvRMSEvrpRMSEp

叶绿素a

Chl a

MSC+SVM0.7990.1700.7560.1850.7060.189
MSC+ANN0.8200.0250.7910.0280.8100.032

叶绿素b

Chl b

SG+SVM0.7640.0880.6960.0960.7660.085
SG+ANN0.8000.0060.8090.0050.7860.008

类胡萝卜素

Car

MSC+SVM0.6800.0380.5970.0410.5510.041
MSC+ANN0.6460.0010.6130.0020.6280.002

抗坏血酸

ASA

SG+SVM0.7461.0560.6791.1520.6281.086
SG+ANN0.8470.6490.8070.8410.7680.964

谷胱甘肽

GSH

MSC+SVM0.7003.9370.6184.3350.6233.754
MSC+ANN0.76113.3810.71211.6700.68911.970
表2  基于PLS所提取成分建立的特征变量模型结果
1 温立香,张芬,何梅珍,等.茶叶品质评价技术的研究现状[J].食品研究与开发,2018,39(15):197-204. DOI:10.3969/j.issn.1005-6521.2018.15.038
WEN L X, ZHANG F, HE M Z, et al. Research situation for evaluation technology of tea quality[J]. Food Research and Development, 2018, 39(15): 197-204. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-6521.2018.15.038
2 杜蕾,郎红,邵辉,等.茶叶中重金属含量影响因素的研究进展[J].安徽农学通报,2018,24(24):40-42. DOI:10.16377/j.cnki.issn1007-7731.2018.24.019
DU L, LANG H, SHAO H, et al. Progress in the impact factors of heavy metal in tea[J]. Anhui Agricultural Science Bulletin, 2018, 24(24): 40-42. (in Chinese with English abstract)
doi: 10.16377/j.cnki.issn1007-7731.2018.24.019
3 陈玉真,单睿阳,王峰,等.田间条件下茶园土壤-茶树-茶汤中铅含量及健康风险评价[J].茶叶学报,2020,61(2):66-73. DOI:10.3969/j.issn.1007-4872.2020.02.004
CHEN Y Z, SHAN R Y, WANG F, et al. Lead concentrations and risk assessment of plantation soil, tea plants, and brewed tea[J]. Acta Tea Sinica, 2020, 61(2): 66-73. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-4872.2020.02.004
4 杨婉秋,肖涵,缪德仁.锗、铜、铅和锌在云南大叶种茶树不同组织中的含量分布[J].昆明学院学报,2020,42(6):30-34. DOI:10.14091/j.cnki.kmxyxb.2020.06.007
YANG W Q, XIAO H, MIAO D R. Concentration distribution characteristics of cermanium, copper, lead and zinc in different tissues of Yunnan large-leaved tea plant[J]. Journal of Kunming University, 2020, 42(6): 30-34. (in Chinese with English abstract)
doi: 10.14091/j.cnki.kmxyxb.2020.06.007
5 叶江华,贾小丽,陈晓婷,等.铅胁迫下不同茶树的生理响应及其亚细胞水平铅分布特性分析[J].中国农业科技导报,2017,19(11):92-99. DOI:10.13304/j.nykjdb.2017.0190
YE J H, JIA X L, CHEN X T, et al. Physiological response and subcellular distribution in different tea plants under Pb stress[J]. Journal of Agricultural Science and Technology, 2017, 19(11): 92-99. (in Chinese with English abstract)
doi: 10.13304/j.nykjdb.2017.0190
6 唐迪,李树炎,徐晓燕,等.重金属镉处理对茶树鲜叶营养成分的影响[J].湖北农业科学,2013,52(18):4407-4410. DOI:10.14088/j.cnki.issn0439-8114.2013.18.011
TANG D, LI S Y, XU X Y, et al. Effect of cadmium on the nutritional components in fresh leaves of Camellia sinensis [J]. Hubei Agricultural Sciences, 2013, 52(18): 4407-4410. (in Chinese with English abstract)
doi: 10.14088/j.cnki.issn0439-8114.2013.18.011
7 ALKHATIB R, MHEIDAT M, ABDO N, et al. Effect of lead on the physiological, biochemical and ultrastructural properties of Leucaena leucocephala [J]. Plant Biology, 2019, 21(6): 1132-1139. DOI: 10.1111/plb.13021
doi: 10.1111/plb.13021
8 杨艺宁,李琬婷,黄晓霞,等.铅胁迫对洋常春藤生长及生理特性的影响[J].西部林业科学,2020,49(3):126-131. DOI:10.16473/j.cnki.xblykx1972.2020.03.019
YANG Y N, LI W T, HUANG X X, et al. Effects of lead stress on growth and physiological characteristics of Hedera helix [J]. Journal of West China Forestry Science, 2020, 49(3): 126-131. (in Chinese with English abstract)
doi: 10.16473/j.cnki.xblykx1972.2020.03.019
9 王丽艳,杨桦,周晨,等.东京野茉莉对重金属胁迫的响应特征研究[J].南方林业科学,2021,49(5):25-28. DOI:10.16259/j.cnki.36-1342/s.2021.05.006
WANG L Y, YANG H, ZHOU C, et al. Research of response characteristics of Styrax tonkinensis to heavy metal stress[J]. South China Forestry Science, 2021, 49(5): 25-28. (in Chinese with English abstract)
doi: 10.16259/j.cnki.36-1342/s.2021.05.006
10 HU X, ZHANG Y, LUO J, et al. Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus)[J]. Chemosphere, 2011, 82(10): 1351-1357. DOI: 10.1016/j.chemosphere.2010.11.079
doi: 10.1016/j.chemosphere.2010.11.079
11 SHAHID M, DUMAT C, KHALID S, et al. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake[J]. Journal of Hazardous Materials, 2017, 325: 36-58. DOI: 10.1016/j.jhazmat.2016.11.063
doi: 10.1016/j.jhazmat.2016.11.063
12 LI X L, SUN C J, LUO L B, et al. Determination of tea polyphenols content by infrared spectroscopy coupled with iPLS and random frog techniques[J]. Computers and Electronics in Agriculture, 2015, 112: 28-35. DOI: 10.1016/j.compag.2015.01.005
doi: 10.1016/j.compag.2015.01.005
13 WULANDARI L, SISWANTI R A Y N, NUGRAHA A S. Determination of total phenolic content and classification model of local variety soursop (Annona muricata L.) leaf powder in different altitudes using NIR and FTIR spectroscopy coupled with chemometrics[J]. Indonesian Journal of Pharmacy, 2019, 30(1): 7-14. DOI: 10.14499/indonesianjpharm30iss1pp7
doi: 10.14499/indonesianjpharm30iss1pp7
14 张惠敏,侯黔东,吴亚维,等.基于Raman和FTIR揭示避雨栽培甜樱桃叶片光合色素变化的光谱学分析[J].光谱学与光谱分析,2021,41(4):1171-1176. DOI:10.3964/j.issn.1000-0593(2021)04-1171-06
ZHANG H M, HOU Q D, WU Y W, et al. Spectral analysis of changes in photosynthetic pigment composition in leaves of sweet cherry tree under rain-shelter cultivation based on Raman and FTIR[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1171-1176. (in Chinese with English abstract)
doi: 10.3964/j.issn.1000-0593(2021)04-1171-06
15 王爱玉,张春庆,吴承来,等.玉米叶绿素含量快速测定方法研究[J].玉米科学,2008,16(2):97-100. DOI:10.13597/j.cnki.maize.science.2008.02.017
WANG A Y, ZHANG C Q, WU C L, et al. Study on a fast method of testing chlorophyll content in maize[J]. Journal of Maize Sciences, 2008, 16(2): 97-100. (in Chinese with English abstract)
doi: 10.13597/j.cnki.maize.science.2008.02.017
16 ZARRILLO A, MINUTOLO M, ALIOTO D, et al. Ascorbic acid regulation in leaves and fruits of tomato ecotypes infected by Eggplant Mottled Dwarf Virus [J]. Scientia Horticulturae, 2017, 225: 512-524. DOI: 10.1016/j.scienta.2017.07.043
doi: 10.1016/j.scienta.2017.07.043
17 TIETZE F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues[J]. Analytical Biochemistry, 1969, 27(3): 502-522.
18 GREEN B R, DURNFORD D G. The chlorophyll-carotenoid proteins of oxygenic photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 685-714. DOI: 10.1146/annurev.arplant.47.1.685
doi: 10.1146/annurev.arplant.47.1.685
19 ZANCAJO V M R, LINDTNER T, EISELE M, et al. FTIR nanospectroscopy shows molecular structures of plant bio-minerals and cell walls[J]. Analytical Chemistry, 2020, 92(20): 13694-13701. DOI: 10.1021/acs.analchem.0c00271
doi: 10.1021/acs.analchem.0c00271
20 RATHER L J, SHAHID-UL-ISLAM, SHABBIR M, et al. Ecological dyeing of woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3041-3049. DOI: 10.1016/j.jece.2016.06.019
doi: 10.1016/j.jece.2016.06.019
21 CAI J X, WANG Y F, XI X G, et al. Using FTIR spectra and pattern recognition for discrimination of tea varieties[J]. International Journal of Biological Macromolecules, 2015, 78: 439-446. DOI: 10.1016/j.ijbiomac.2015.03.025
doi: 10.1016/j.ijbiomac.2015.03.025
22 JOZWIAK T, FILIPKOWSKA U, STRUK-SOKOLOWSKA J, et al. The use of spent coffee grounds and spent green tea leaves for the removal of cationic dyes from aqueous solutions[J]. Scientific Reports, 2021, 11(1): 9584. DOI: 10.1038/s41598-021-89095-6
doi: 10.1038/s41598-021-89095-6
23 LI X L, ZHOU R Q, XU K W, et al. Rapid determination of chlorophyll and pheophytin in green tea using Fourier transform infrared spectroscopy[J]. Molecules, 2018, 23(5): 1010. DOI: 10.3390/molecules23051010
doi: 10.3390/molecules23051010
24 REVELOU P K, KOKOTOU M G, PAPPAS C S, et al. Direct determination of total isothiocyanate content in broccoli using attenuated total reflectance infrared Fourier transform spectroscopy[J]. Journal of Food Composition and Analysis, 2017, 61: 47-51. DOI: 10.1016/j.jfca.2017.01.020
doi: 10.1016/j.jfca.2017.01.020
25 LI X L, ZHANG Y Y, HE Y. Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics[J]. Scientific Reports, 2016, 6(1): 30313. DOI: 10.1038/srep30313
doi: 10.1038/srep30313
26 SCHRECK E, DAPPE V, SARRET G, et al. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves[J]. Science of the Total Environment, 2014, 476: 667-676. DOI: 10.1016/j.scitotenv.2013.12.089
doi: 10.1016/j.scitotenv.2013.12.089
27 TOMASEVIC M, VUKMIROVIC Z, RAJSIC S, et al. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area[J]. Chemosphere, 2005, 61(6): 753-760. DOI: 10.1016/j.chemosphere.2005.03.077
doi: 10.1016/j.chemosphere.2005.03.077
28 张庆,魏树和,代惠萍,等.硒对茶树镉毒害的缓解作用研究[J].南京林业大学学报(自然科学版),2020,44(1):200-204. DOI:10.3969/j.issn.1000-2006.201902006
ZHANG Q, WEI S H, DAI H P, et al. The alleviating effects of selenium on cadmium-induced toxicity in tea leaves[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1): 200-204. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2006.201902006
29 许永安.低温胁迫对甜瓜幼苗光合能力及叶绿素荧光参数的影响[J].中国瓜菜,2020,33(2):22-26. DOI:10.16861/j.cnki.zggc.2020.0030
XU Y A. Effects of low-temperature stress on photosynthetic capacity and chlorophyll fluorescence parameters in melon[J]. China Cucurbits and Vegetables, 2020, 33(2): 22-26. (in Chinese with English abstract)
doi: 10.16861/j.cnki.zggc.2020.0030
[1] 黄艳梅,周菲菲,罗立民,黄海涛,葛志伟,杨江帆,屠幼英,吴媛媛. 茶树2种酰基化黄酮苷的分布规律及加工变化特性研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 573-582.
[2] 陈莲芙,任苧,陈益,屠幼英. 茶树花皂苷对卵巢癌干细胞样细胞增殖的影响及机制[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 667-676.
[3] 杨倩倩,蔡建国,王安,刘艳伟. 绣球对酸雨和铝复合处理的生长及铝吸收响应[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 718-726.
[4] 魏雨晴,王毓宁,李绍佳,孙崇德,吴迪. 基于自制便携式近红外光谱仪的枇杷果实可溶性固形物无损检测及年度重复验证[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 119-125.
[5] 李金,陈莲芙,金恩惠,李博,屠幼英. 不同茶树品种的茶树花黄酮苷研究[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 707-714.
[6] 吕晓菡,蒋锦琳,杨静,陈建瑛,岑海燕,傅鸿妃,周毅飞. 基于特征波长建模的近红外光谱技术检测辣椒素含量[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 760-766.
[7] 王鹏杰,岳川,陈笛,郑玉成,郑知临,林浥,杨江帆,叶乃兴. 茶树CsWRKY6CsWRKY31CsWRKY48基因的分离及表达分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 30-38.
[8] 苗慧莹, 陈浩, 常嘉琪, 王梦雨, 张芬, 孙勃, 汪俏梅. 葡萄糖和茉莉酸甲酯对芥蓝芽菜芥子油苷积累及其抗氧化特性的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 327-334.
[9] 伍梦瑶,黄莹捷,姚燕妮,黄友谊. 勐库大叶种茶树多酚氧化酶粗酶的酶学性质[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 579-588.
[10] 王舒甜, 张金池, 张亮. 油菜素内酯对盐胁迫下香樟叶片光合色素以及叶绿素荧光的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 45-53.
[11] 侯玲,沈娴,陈琳,金恩惠,吴媛媛,屠幼英. 茶树花蛋白质碱提和酶提工艺优化及其功能性质[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 442-450.
[12] 杨节, 龚淑英*, 唐德松. 茶树中过氧化氢酶活力变化规律[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 647-652.
[13] 张敏1,2, 陈永根3, 于翠平1, 潘志强1, 范冬梅1, 骆耀平1, 王校常1*. 在茶园生产周期过程中茶树群落生物量和碳储量动态估算[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 687-694.
[14] 李军良,王从庆. 量子进化算法在苹果漫透射近红外光谱分析中的应用[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 453-459.
[15] 岑益郎,宋韬,何勇,鲍一丹. 基于可见/近红外漫反射光谱的土壤有机质含量估算方法研究[J]. 浙江大学学报(农业与生命科学版), 2011, 37(3): 300-306.