Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (5): 573-582    DOI: 10.3785/j.issn.1008-9209.2021.10.121
园艺科学     
茶树2种酰基化黄酮苷的分布规律及加工变化特性研究
黄艳梅1(),周菲菲1,罗立民1,黄海涛2,葛志伟3,杨江帆4,屠幼英1,吴媛媛1()
1.浙江大学农业与生物技术学院茶学系,杭州 310058
2.杭州市农业科学研究院茶叶研究所,杭州 310024
3.浙江大学农生环测试中心,杭州 310058
4.福建农林大学园艺学院/茶学福建省高校重点实验室,福州 350002
Distribution and processing characteristics of two acylated flavonol glycosides in Camellia sinensis
Yanmei HUANG1(),Feifei ZHOU1,Limin LUO1,Haitao HUANG2,Zhiwei GE3,Jiangfan YANG4,Youying TU1,Yuanyuan WU1()
1.Tea Science Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Tea Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
3.Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
4.College of Horticulture/Key Laboratory of Tea Science at Universities in Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
 全文: PDF(2896 KB)   HTML
摘要:

本研究从茶叶中分离纯化出2种酰基化黄酮四糖苷{quercetin-3-O-[(E)-p-coumaroyl-(1→2)][α-L-arabinopyranosyl-(1→3)]-[β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside,F1;kaempferol-3-O-[(E)-p-coumaroyl-(1→2)]-[α-L-arabinopyranosyl-(1→3)]-[β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside,F2},通过自主建立的高效液相色谱(high performance liquid chromatography, HPLC)定量检测方法,系统研究了F1与F2在茶树不同组织、叶位、品种中的分布特点,探究光照对F1和F2含量的影响,以及两者在乌龙茶加工过程中的动态变化。结果表明:F1主要在叶和茎中分布,F2仅存在于叶中;根中未检测到F1与F2。随着叶片成熟度的增加,F1与F2的含量呈先升高后降低的趋势。在42个茶树品种中,F1和F2含量范围分别为0~2.31、0~1.56 mg/g;F1在‘黄金菊’中含量最高,在‘本山’和‘绿芽佛手’中未检测到;F2在‘黄金菊’中含量最高,在‘绿芽佛手’‘金面奇兰’‘中黄2号’和‘本山’中未检测到。对3个茶树品种进行遮阴实验,发现遮阴处理组F1含量显著降低,说明光照对其形成具有重要作用。选取‘福建水仙’鲜叶进行乌龙茶加工,F1和F2含量在整个加工过程中呈降低趋势,且在杀青工序中降幅最大,做青工序中降幅最小,表明不同加工工序对两者的含量存在不同程度的影响。

关键词: 酰基化黄酮苷茶树品种叶位组织遮阴处理乌龙茶加工    
Abstract:

In this study, two acylated flavonol tetraglycosides {quercetin-3-O-[(E)-p-coumaroyl-(1→2)][α-L-arabinopyranosyl-(1→3)]-[β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside,F1;kaempferol-3-O-[(E)-p-coumaroyl-(1→2)]-[α-L-arabinopyranosyl-(1→3)]-[β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside,F2} were isolated and purified from Camellia sinensis, and the distribution characteristics of F1 and F2 in different tissues, leaf positions, and tea cultivars were systematically studied through the independent established high performance liquid chromatography (HPLC) method. The effect of light on the contents of F1 and F2, and the dynamic changes in the processing stages of oolong tea were also studied. The results showed that F1 was mainly distributed in tea leaves and stems, and F2 was only present in leaves; neither F1 nor F2 was detected in the roots. With the increase of leaf maturity, the contents of F1 and F2 firstly increased and then decreased. Among the 42 tea cultivars, the contents of F1 and F2 ranged from 0-2.31 mg/g and 0-1.56 mg/g, respectively. F1 had the highest content in ‘Huangjinju’ and was not detected in ‘Benshan’ and ‘Lüyafoshou’ tea cultivars. F2 had the highest content in ‘Huangjinju’ and was not detected in ‘Lüyafoshou’, ‘Jinmian Qilan’, ‘Zhonghuang No. 2’ and ‘Benshan’. Shading experiments were carried out on three tea cultivars, and it was found that the content of F1 in the shading treatment group was significantly reduced, indicating that the light plays a significant role in the formation of F1. The fresh leaves of ‘Fujian Shuixian’ were selected for the processing of oolong tea. The contents of F1 and F2 showed downward trends during the whole processing stages, and the largest decline was observed in the process of fixation, while the smallest was in the process of rotation, which shows that different processing operations have different degrees of influences on the contents of two substances.

Key words: acylated flavonol glycosides    tea cultivar    leaf position    tissue    shading treatment    oolong tea processing
收稿日期: 2021-10-12 出版日期: 2022-11-02
CLC:  S 571.1  
基金资助: 福建省“2011中国乌龙茶产业协同创新中心”项目(〔2015〕No. 75);浙江省重点研发计划项目(2018C02012);浙江省农业新品种茶树选育重大科技专项(2021C02067)
通讯作者: 吴媛媛     E-mail: hym18273120704@163.com;yywu@zju.edu.cn
作者简介: 黄艳梅(https://orcid.org/0000-0002-6905-0765),E-mail:hym18273120704@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄艳梅
周菲菲
罗立民
黄海涛
葛志伟
杨江帆
屠幼英
吴媛媛

引用本文:

黄艳梅,周菲菲,罗立民,黄海涛,葛志伟,杨江帆,屠幼英,吴媛媛. 茶树2种酰基化黄酮苷的分布规律及加工变化特性研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 573-582.

Yanmei HUANG,Feifei ZHOU,Limin LUO,Haitao HUANG,Zhiwei GE,Jiangfan YANG,Youying TU,Yuanyuan WU. Distribution and processing characteristics of two acylated flavonol glycosides in Camellia sinensis. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 573-582.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.10.121        https://www.zjujournals.com/agr/CN/Y2022/V48/I5/573

t/min

流动相A

Mobile phase A/%

流动相B

Mobile phase B/%

0.018515
30.007030
30.017030
40.001090
40.011090
42.008515
表1  HPLC洗脱梯度

对照品

Reference substance

质量浓度梯度 Content gradient
12345678910
F11.00.50.250.1250.062 50.031 250.015 6250.007 812 50.003 906 250.001 953 125
F20.50.250.1250.062 50.031 250.015 625
表2  对照品F1和F2溶液质量浓度 (mg/mL)
图1  2种酰基化黄酮苷的分子结构及HPLC图谱A. F1的分子结构;B. F2的分子结构;C. 2种酰基化黄酮苷的HPLC图谱(λ=360 nm)。
图2  2种酰基化黄酮苷的标准曲线
组织 TissueF1F2
根 Root0.00±0.00b0.00±0.00b
茎 Stem1.37±0.00a0.00±0.00b
叶 Leaf1.43±0.07a1.04±0.09a
表3  2种酰基化黄酮苷在茶树不同组织部位的含量分布 (mg/g)
图3  2种酰基化黄酮苷在不同叶位中的含量分布及含量比值1:第1叶;2:第2叶;3:第3叶;4:第4叶;5:老叶。短栅上不同小写字母表示同种酰基化黄酮苷在不同叶位间在P<0.05水平差异有统计学意义。n=3。
图4  2种酰基化黄酮苷在不同茶树品种中的含量分布n=3。

化合物

Compound

w/(mg/g)

品种个数

Number of cultivars

品种比例

Proportion of cultivars/%

变异系数

Coefficient of variation/%

F10.00~0.501945.2447.50
0.51~1.001638.1021.29
1.01~1.5049.5210.63
1.51~2.5037.1415.78
F20.00~0.503173.8149.97
0.51~1.00921.4322.69
1.01~2.0024.767.64
表4  2种酰基化黄酮苷的含量分组及组间变异系数
图5  遮阴处理对2种酰基化黄酮苷含量的影响N26:‘福建水仙’;N8:‘龙井1号’;N3:‘政和大白’。*表示在P<0.05水平差异有统计学意义,ns表示差异无统计学意义;n=3。下同。
图6  2种酰基化黄酮苷遮阴处理后的含量变化率
图7  2种酰基化黄酮苷含量在乌龙茶加工过程中的动态变化以鲜叶中F1和F2的含量为基准,将其分别定为100%,其他各加工过程中的含量表示与鲜叶含量的比值。XY:鲜叶;WD:萎凋;ZQ1、ZQ2、ZQ3、ZQ4:做青1、做青2、做青3、做青4;SQ:杀青;RN:揉捻;GZ:干燥。n=3。
加工阶段 Processing stageF1F2
萎凋 Withering35.5930.23
做青 Rotation3.731.11
杀青 Fixation58.1049.44
揉捻 Rolling5.882.22
干燥 Drying53.9740.91
表5  2种酰基化黄酮苷在乌龙茶加工过程中的含量降低幅度 (%)
1 ZUCHOWSKI J, PECIO L, MARCINIAK B, et al. Unusual isovalerylated flavonoids from the fruit of sea buckthorn (Elaeagnus rhamnoides) grown in Sokolka, Poland[J]. Phytochemistry, 2019, 163: 178-186. DOI:10.1016/j.phytochem.2019.03.001
doi: 10.1016/j.phytochem.2019.03.001
2 LI K K, LI S S, XU F, et al. A novel acylated quercetin glycoside and compounds of inhibitory effects on α-glucosidase from Panax ginseng flower buds[J]. Natural Product Research, 2020, 34(18): 2559-2565. DOI:10.1080/14786419.2018.1543685
doi: 10.1080/14786419.2018.1543685
3 SHKONDROV A M, KRASTEVA I N. HIGH resolution LC-MS/MS screening for secondary metabolites in Bulgarian species of genus Astragalus L.[J]. Quimica Nova, 2021, 44: 683-688. DOI:10.21577/0100-4042.20170730
doi: 10.21577/0100-4042.20170730
4 WANG Y X, XIE X, LIU L N, et al. Four new flavonol glycosides from the leaves of Ginkgo biloba [J]. Natural Product Research, 2021, 35(15): 2520-2525. DOI:10.1080/14786419.2019.1684282
doi: 10.1080/14786419.2019.1684282
5 WU X L, ZHAO Y, HAYTOWITZ D B, et al. Effects of domestic cooking on flavonoids in broccoli and calculation of retention factors[J]. Heliyon, 2019, 5(3): e01310. DOI:10.1016/j.heliyon.2019.e01310
doi: 10.1016/j.heliyon.2019.e01310
6 NIELSEN J K, OLSEN C E, PETERSEN M K. Acylated flavonol glycosides from cabbage leaves[J]. Phytochemistry, 1993, 34(2) :539-544.
7 FERRERES F, CASTANER M, TOMASBARBERAN F A. Acylated flavonol glycosides from spinach leaves (Spinacia oleracea)[J]. Phytochemistry, 1997, 45(8): 1701-1705.
8 SAID R B, RAHALI S, AISSA M A B, et al. Fingerprinting profile of flavonol glycosides from Bassia eriophora using negative electrospray ionization, computational studies and their antioxidant activities[J]. Journal of Molecular Structure, 2021, 1241: 130689. DOI:10.1016/j.molstruc.2021.130689
doi: 10.1016/j.molstruc.2021.130689
9 LORENZ P, BUNSE M, KLAIBER I, et al. Comprehensive phytochemical characterization of herbal parts from Kidney Vetch (Anthyllis vulneraria L.) by LC/MS(n) and GC/MS[J]. Chemistry and Biodiversity, 2020, 17(10): e2000485. DOI:10.1002/cbdv.202000485
doi: 10.1002/cbdv.202000485
10 FAVRE G, GONZALEZ-NEVES G, PICCARDO D, et al. New acylated flavonols identified in Vitis vinifera grapes and wines[J]. Food Research International, 2018, 112: 98-107. DOI:10.1016/j.foodres.2018.06.019
doi: 10.1016/j.foodres.2018.06.019
11 MIHARA R, MITSUNAGA M, FUKUI Y, et al. A novel acylated quercetin tetraglycoside from oolong tea (Camelia sinensis) extracts[J]. Tetrahedron Letters, 2004, 45(26): 5077-5080. DOI:10.1016/j.tetlet.2004.04.192
doi: 10.1016/j.tetlet.2004.04.192
12 TOHGE T, WENDENBURG R, ISHIHARA H, et al. Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae[J]. Nature Communications, 2016, 7: 12399. DOI:10.1038/ncomms12399
doi: 10.1038/ncomms12399
13 AMEN Y M, MARZOUK A M, ZAGHLOUL M G, et al. A new acylated flavonoid tetraglycoside with anti-inflammatory activity from Tipuana tipu leaves[J]. Natural Product Research, 2015, 29(6): 511-517. DOI:10.1080/14786419.2014.952233
doi: 10.1080/14786419.2014.952233
14 MANIR M M, KIM J K, LEE B G, et al. Tea catechins and flavonoids from the leaves of Camellia sinensis inhibit yeast alcohol dehydrogenase[J]. Bioorganic and Medicinal Chemistry, 2012, 20(7): 2376-2381. DOI:10.1016/j.bmc.2012.02.002
doi: 10.1016/j.bmc.2012.02.002
15 BAI W X, WANG C, WANG Y J, et al. A novel acylated flavonol tetraglycoside with inhibitory effect on lipid accumulation in3T3-L1 cells from Lu’an Guapian tea and quantification of flavonoid glycosides in six major processing types of tea[J]. Journal of Agricultural and Food Chemistry, 2017, 65(14): 2999-3005. DOI:10.1021/acs.jafc.7b00239
doi: 10.1021/acs.jafc.7b00239
16 顾莹婕.福建水仙茶两种黄酮糖苷的分离鉴定及其抑制口腔致病菌功能的研究[D].杭州:浙江大学,2019.
GU Y J. Studies on isolation and identification of two flavonol glycosides from Fujian Shuixian tea and their inhibition of oral pathogenic bacteria[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract)
17 陆英,钟晓红,操君喜,等.茯砖茶中黄酮类化合物的分离与鉴定[J].现代食品科技,2017,33(3):285-294. DOI:10.13982/j.mfst.1673-9078.2017.3.043
LU Y, ZHONG X H, CAO J X, et al. Isolation and identification of flavones from Fuzhuan tea[J]. Modern Food Science and Technology, 2017, 33(3): 285-294. (in Chinese with English abstract)
doi: 10.13982/j.mfst.1673-9078.2017.3.043
18 LU Y, HE Y J, ZHU S H, et al. New acylglycosides flavones from Fuzhuan brick tea and simulation analysis of their bioactive effects[J]. International Journal of Molecular Sciences, 2019, 20(3): 494. DOI:10.3390/ijms20030494
doi: 10.3390/ijms20030494
19 HSIEH S K, LIN H Y, CHEN C J, et al. Promotion of myotube differentiation and attenuation of muscle atrophy in murine C2C12 myoblast cells treated with teaghrelin[J]. Chemico-Biological Interactions, 2020, 315: 108893. DOI:10.1016/j.cbi.2019.108893
doi: 10.1016/j.cbi.2019.108893
20 TIAN Y Z, LIU X, LIU W, et al. A new anti-proliferative acylated flavonol glycoside from Fuzhuan brick-tea[J]. Natural Product Research, 2016, 30(23): 2637-2641. DOI:10.1080/14786419.2015.1136911
doi: 10.1080/14786419.2015.1136911
21 KEHR J, YOSHITAKE S, IJIRI S, et al. Ginkgo biloba leaf extract (EGb 761 (R)) and its specific acylated flavonol constituents increase dopamine and acetylcholine levels in the rat medial prefrontal cortex: possible implications for the cognitive enhancing properties of EGb 761 (R)[J]. International Psychogeriatrics, 2012, 24: S25-S34. DOI:10.1017/S1041610212000567
doi: 10.1017/S1041610212000567
22 MIHARA R, MITSUNAGA M, FUKUI Y, et al. A novel acylated quercetin tetraglycoside from oolong tea (Camelia sinensis) extracts[J]. Tetrahedron Letters, 2004, 45: 5077-5080. DOI:10.1016/j.tetlet.2004.04.192
doi: 10.1016/j.tetlet.2004.04.192
23 HUA F, ZHOU P, WU H Y, et al. Inhibition of α-glucosidase and α‍-amylase by flavonoid glycosides from Lu’an Guapian tea: molecular docking and interaction mechanism[J]. Food and Function, 2018, 9(8): 4173-4183. DOI:10.1039/c8fo00562a
doi: 10.1039/c8fo00562a
24 MONOBE M, NOMURA S, EMA K, et al. Quercetin glycosides-rich tea cultivars (Camellia sinensis L.) in Japan[J]. Food Science and Technology Research, 2015, 21(3): 333-340. DOI:10.3136/fstr.21.333
doi: 10.3136/fstr.21.333
25 FORREST G I, BENDALL D S. Distribution of polyphenols in tea plant (Camellia sinensis L.)[J]. Biochemical Journal, 1969, 113(5): 741-755.
26 MATUS J T, LOYOLA R, VEGA A, et al. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera [J]. Journal of Experimental Botany, 2009, 63(3): 853-867. DOI:10.1093/jxb/ern336
doi: 10.1093/jxb/ern336
27 LENG P S, SU S C, WANG T H, et al. Effects of light intensity and light quality on photosynthesis, flavonol glycoside and terpene lactone contents of Ginkgo biloba L.seedlings[J]. Journal of Plant Resources and Environment, 2002, 11(1): 1-4.
[1] 周认,蔡宇,林恬逸,柴明良. 模拟干旱胁迫下褪黑素和表油菜素内酯对沟叶结缕草长期继代培养愈伤组织再生的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 36-44.
[2] 李辉,冯伟,于俊杰,张明胤,周春妙,唐永凯. 甲壳动物过氧化物还原酶基因的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 284-294.
[3] 赵航晔,夏琛,何普明,屠幼英. 茶多酚抗炎和促外伤愈合作用及其机制[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 118-126.
[4] 李金,陈莲芙,金恩惠,李博,屠幼英. 不同茶树品种的茶树花黄酮苷研究[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 707-714.
[5] 王鹏杰,岳川,陈笛,郑玉成,郑知临,林浥,杨江帆,叶乃兴. 茶树CsWRKY6CsWRKY31CsWRKY48基因的分离及表达分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 30-38.
[6] 郑群艳,潘晓艺,沈锦玉,陈少波,徐洋,许婷. 罗氏沼虾谷氨酸脱氢酶基因克隆及其在MrTV 感染下的组织表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 639-648.
[7] 王家庆,董慧明,李振刚,李绍明,王若楠,付玉洁. 青鳉组织蛋白酶E基因全长cDNA克隆与功能预测[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 183-191.
[8] 翁宇豪, 陈铭. 多层网络模型在水稻与癌症蛋白质互作网络中的应用[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 15-23.
[9] 崔雨婷, 张睿, 陈正礼, 罗启慧, 祝春梅, 孙凤娇, 陈梦鹿. 大鼠自发性乳腺肿瘤中Bax、Bcl-2和Caspase-3的表达[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 119-126.
[10] 关小燕, 陈丽妃, 何艳军, 王洁, 卢钢*. 番茄SlMAPK7基因的亚细胞定位与组织表达特性[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 598-604.
[11] 吕琳慧1, 徐幼平2, 任至玄1, 康冬1, 王继鹏1, 蔡新忠1*. Ca2+信号通路对本氏烟叶位介导的核盘菌抗性的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 605-610.
[12] 陈健舜*, 朱凝瑜, 丁雪燕, 姚高华, 陈晓明, 孔蕾, 郑天伦, 何中央. 浙江省主要养殖区凡纳滨对虾(Litopenaeus vannamei)红体病病原研究[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 688-696.
[13] 葛延松, 曹嫦妤, 王丽丽, 李楠, 江秀清, 李金龙*. 鸡硒蛋白T的硒代半胱氨酸插入序列元件、蛋白结构与功能及组织表达差异[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 9-15.
[14] 黄玉吉1,2, 陈斌1*, 张传溪2*. 褐飞虱体内Himetobi P病毒的检测及组织定位[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 473-590.
[15] 罗启慧,章瑶,陈恋,陈正礼,曾文,程安春. 肺炎链球菌感染的猕猴肺及气管内IFN-γ蛋白与mRNA表达[J]. 浙江大学学报(农业与生命科学版), 2012, 38(1): 48-54.