Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (1): 98-108    DOI: 10.3785/j.issn.1008-9209.2023.03.012
资源利用与环境保护     
施肥旱作农田土壤中人类病原菌群落组成及动态变化特征
齐明慧1(),程建华1,2(),唐翔宇1,2
1.浙江农林大学林业与生物技术学院,省部共建亚热带森林培育国家重点实验室,浙江 杭州 311300
2.中国科学院、水利部成都山地灾害与环境研究所,山地表生过程与生态调控重点实验室,四川 成都 610041
Composition and dynamic change characteristics of human pathogenic communities in dryland farmland with manure application
Minghui QI1(),Jianhua CHENG1,2(),Xiangyu TANG1,2
1.State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
2.Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
 全文: PDF(2166 KB)   HTML
摘要:

采集浙江省杭州、嘉兴、衢州、金华、龙游5个地区长期施用鸡粪、猪粪或化肥的农田土壤进行室内培养实验,然后采用高通量测序及序列比对方法分析供试土壤细菌和人类病原菌(human pathogenic bacteria, HPB)群落组成,旨在进一步探究施用粪肥后土壤中HPB群落组成差异及动态变化特征。结果表明:在160个供试土壤样品和2种粪肥样品中共比对到75种HPB,其中优势HPB为巨大芽孢杆菌(Bacillus_megaterium_QM_B1551,24.2%)和拜氏梭菌(Clostridium_beijerinckii_NCIMB_8052,23.1%);施用猪粪处理的土壤中细菌和HPB的香农(Shannon)指数均有所降低,而施用鸡粪或化肥处理的土壤中细菌和HPB多样性无明显变化。主坐标分析结果表明,施用粪肥处理的土壤细菌群落组成与未施肥对照之间具有显著差异,尤其是施用猪粪处理差异最显著(P<0.001);土壤样品间共有HPB占所有HPB的22.7%;施用粪肥处理的土壤中大部分HPB的相对丰度高于未施肥对照,并随培养时间的延长而不断下降。方差分解分析结果表明,土壤理化性质、细菌群落及两者交互作用是土壤中HPB变异的重要因素。综上所述,施用粪肥处理的土壤中HPB的变化特征主要受肥料类型、土壤类型、土壤理化性质及固有细菌群落的影响。

关键词: 人类病原菌粪肥细菌群落土壤动态变化    
Abstract:

To understand the community structure composition and dynamic change characteristics of human pathogenic bacteria (HPB) in soils after manure application, laboratory cultivation experiments were conducted on agricultural soils with long-term application of chicken manure, pig manure, or chemical fertilizer in five regions of Hangzhou, Jiaxing, Quzhou, Jinhua, and Longyou in Zhejiang Province, and the community compositions of the soil bacteria and HPB were analyzed by high-throughput sequencing and sequence alignment methods. The results showed that a total of 75 HPB were detected in 160 soil samples and two manure samples, and the dominant HPB were Bacillus_megaterium_QM_B1551 (24.2%) and Clostridium_beijerinckii_NCIMB_8052 (23.1%). The Shannon indexes of bacteria and HPB in the soils decreased after the application of pig manure, while the diversities of bacteria and HPB in the soils with the application of chicken manure or chemical fertilizer had no significant changes. The results of the principal coordinate analysis showed that there was a significant difference in the bacterial community composition of soils between the manure treatment and the unfertilized control, especially in the pig manure treatment (P<0.001); 22.7% of all HPB were shared among the soil samples; and the relative abundance of most HPB in the soils treated with manure was higher than that in the unfertilized control, and it decreased continuously with the extension of cultivation time. The results of the variance partitioning analysis showed that soil physicochemical properties, bacterial communities, and their interactions were important factors contributing to the variation of HPB in the soils. In summary, the HPB variation characteristics in soils treated with manure are influenced mainly by manure types, soil types, soil physicochemical properties, and inherent bacterial communities.

Key words: human pathogenic bacteria    manure    bacterial community    soil    dynamic change
收稿日期: 2023-03-01 出版日期: 2024-03-01
CLC:  S154.3  
基金资助: 国家自然科学基金项目(42007361);浙江农林大学科研发展基金项目(2020FR040);浙江省自然科学基金项目(LD21D010001)
通讯作者: 程建华     E-mail: 2020102022012@stu.zafu.edu.cn;chengjh@zafu.edu.cn
作者简介: 齐明慧(https://orcid.org/0009-0004-9190-284X),E-mail:2020102022012@stu.zafu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
齐明慧
程建华
唐翔宇

引用本文:

齐明慧,程建华,唐翔宇. 施肥旱作农田土壤中人类病原菌群落组成及动态变化特征[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 98-108.

Minghui QI,Jianhua CHENG,Xiangyu TANG. Composition and dynamic change characteristics of human pathogenic communities in dryland farmland with manure application. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 98-108.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.03.012        https://www.zjujournals.com/agr/CN/Y2024/V50/I1/98

原始土壤样品

Original soil sample

pH值

pH value

电导率

EC/

(μS/cm)

铵态氮

NH4-N/

(mg/kg)

硝态氮

NO3-N/

(mg/kg)

有效磷

AP/

(mg/kg)

总有机碳

TOC/

(mg/g)

全磷

TP/

(mg/g)

全氮

TN/

(mg/g)

全钾

TK/

(mg/g)

嘉兴市

JX

CM_Soil7.54103.5512.2724.9171.2920.762.501.686.89
PM_Soil8.08132.2519.8042.11129.5626.641.341.816.92
NPK_Soil6.8694.3016.7340.9799.1623.011.301.686.60

汤溪镇

(金华市)

TX

CM_Soil5.5763.7515.0528.98750.8822.230.991.324.96
PM_Soil6.45120.9019.1062.231 457.0424.080.601.425.25
NPK_Soil4.5856.556.8227.0938.3313.400.491.294.49

塘坞

(衢州市)

TW

CM_Soil5.8382.3516.7346.7845.9418.812.771.156.26
PM_Soil5.16103.3522.4471.23305.4419.882.281.186.51
NPK_Soil7.96142.504.9990.9430.0923.324.441.115.72

昌化镇

(杭州市)

CH

CM_Soil7.13704.5012.45520.70540.9952.083.808.5110.27
PM_Soil7.93190.005.81108.5144.0616.740.121.076.32
NPK_Soil5.3366.959.0125.82201.1915.010.110.986.84

龙游市

LY

CM_Soil5.60283.0037.59119.82134.4428.350.111.196.16
PM_Soil6.79166.3525.0568.62587.5529.380.101.355.97
1_NPK_Soil4.8938.9514.7313.65136.326.650.550.577.46
2_NPK_Soil4.7963.2010.8523.34112.7915.590.480.647.25
表1  原始土壤样品的基本理化性质

采样地

Sampling site

处理

Treatment

pH值pH value

电导率

EC/

(μS/cm)

铵态氮

NH4-N/

(mg/kg)

硝态氮

NO3-N/

(mg/kg)

总有机碳

TOC/

(mg/g)

有效磷

AP/

(mg/kg)

全磷

TP/

(mg/g)

全氮

TN/

(mg/g)

JXCMs6.89bc543.60a21.63a292.04ab32.00b219.94b1.79a1.32a
CMs_CK7.22ab194.70b4.60b121.82b27.25c101.28c1.58b1.08a
PMs7.37a603.80a11.69ab415.64a35.39a369.72a1.56b1.59a
PMs_CK7.16ab267.00b3.86b190.39b31.12b163.64bc1.38c1.44a
NPKs6.69c224.20b10.24ab164.40b26.71c137.86c1.55b1.20a
NPKs_CK6.83bc156.32b3.56b114.81b27.07c133.73c1.59b1.08a
TXCMs5.78c386.40b65.02a122.35b27.42b886.57c2.74c1.09bc
CMs_CK4.97d153.96d14.97bc123.80b24.30c756.81c2.34d0.82cd
PMs6.54a531.40a26.11b342.07a32.57a1 251.15b5.88a2.03a
PMs_CK6.21b251.18c4.11c191.70b28.92b1 529.93a5.40b1.54b
NPKs4.30e146.48d27.34b80.17b12.71d29.95d0.77e0.41d
NPKs_CK4.46e77.50e2.54c46.27b13.23d23.47d0.80e0.49d
TWCMs6.38b460.60a70.32a146.86a24.92b223.50c1.76c1.45a
CMs_CK5.60c139.84d8.57c122.18a19.22c72.01d1.32e0.89b
PMs6.00bc372.80ab36.93b219.59a26.63b589.09a2.40a0.70b
PMs_CK5.00d171.34d15.13c150.84a20.41c303.85b1.98b0.65b
NPKs7.30a285.62bc8.41c201.68a29.52a60.72d1.46d0.61b
NPKs_CK7.46a209.54cd3.75c146.36a28.98a63.51d1.45d0.62b
CHCMs7.05b1 357.60a686.60b807.62a223.17a748.78a5.41a10.16a
CMs_CK7.05b1 087.00a1 087.00a816.84a213.78a630.11b4.82b8.95b
PMs7.36ab536.80b465.09bc315.12b28.66b223.51c1.35c0.86c
PMs_CK7.59a248.60bc248.60c180.99b25.78b56.53d1.03c0.75c
NPKs4.94c203.00bc203.00c127.35b17.48b202.02c1.37c0.69c
NPKs_CK5.10c126.46c126.46c85.41b15.75b192.44c1.35c0.58c
LYCMs5.78b846.20a66.41a363.84a34.76b307.26b2.30b1.25b
CMs_CK4.74c389.80b5.10c295.64ab25.55c83.95b1.55c1.03bc
PMs6.82a493.40b25.74bc302.12ab38.86a1 611.15a6.79a1.99a
PMs_CK6.55a272.26c14.78bc183.70bc33.65b1 362.30a6.73a1.86a
1_NPKs4.68c137.56d39.32ab92.86c10.00f135.69b0.87d0.36d
1_NPKs_CK4.85c91.20d13.59bc61.58c9.99f125.05b0.82d0.33d
2_NPKs4.58c163.08cd29.10bc89.95c20.72d98.09b0.94d0.39d
2_NPKs_CK4.68c104.88d18.54bc65.86c17.24e88.90b0.99d0.54cd
表2  培养土壤样品的基本理化性质
图2  不同样品间属水平下共有和独有的HPB数量(A)及门水平下HPB组成(B)点线图表示集合间不同交集,单个节点表示特有的HPB,连线节点表示共有的HPB。
图3  不同采样地不同施肥处理下土壤细菌群落组成(A)和HPB组成(B)的差异
图4  施用鸡粪(A)、猪粪(B)和化肥(C)土壤中HPB的相对丰度
图5  土壤理化性质与细菌群落对HPB组成变化的影响
1 VAN BRUGGEN A H C, GOSS E M, HAVELAAR A, et al. One Health-Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health[J]. Science of the Total Environment, 2019, 664: 927-937. DOI: 10.1016/j.scitotenv.2019.02.091
doi: 10.1016/j.scitotenv.2019.02.091
2 NINH H T, GRANDY A S, WICKINGS K, et al. Organic amendment effects on potato productivity and quality are related to soil microbial activity[J]. Plant and Soil, 2015, 386(1/2): 223-236. DOI: 10.1007/s11104-014-2223-5
doi: 10.1007/s11104-014-2223-5
3 LAN Z L, ZHAO Y, ZHANG J G, et al. Effects of the long-term fertilization on pore and physicochemical characteristics of loess soil in Northwest China[J]. Agronomy Journal, 2020, 112(6): 4741-4751. DOI: 10.1002/agj2.20401
doi: 10.1002/agj2.20401
4 OLIVER D M, CLEGG C D, HAYGARTH P M, et al. Assessing the potential for pathogen transfer from grassland soils to surface waters[M]//SPARKS D L. Advances in Agronomy. Amsterdam: Elsevier, 2005: 125-180. DOI: 10.1016/s0065-2113(04)85003-x
doi: 10.1016/s0065-2113(04)85003-x
5 FEWTRELL L, KAY D. Recreational water and infection: a review of recent findings[J]. Current Environmental Health Reports, 2015, 2(1): 85-94. DOI: 10.1007/s40572-014-0036-6
doi: 10.1007/s40572-014-0036-6
6 LI H Y, ZHENG X Q, TAN L, et al. The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers[J]. Environmental Research, 2022, 203: 111884. DOI: 10.1016/j.envres.2021.111884
doi: 10.1016/j.envres.2021.111884
7 ALEGBELEYE O O, SINGLETON I, SANT’ANA A S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review[J]. Food Microbiology, 2018, 73: 177-208. DOI: 10.1016/j.fm.2018.01.003
doi: 10.1016/j.fm.2018.01.003
8 FANG H, HAN L X, ZHANG H P, et al. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils[J]. Journal of Hazardous Materials, 2018, 357: 53-62. DOI: 10.1016/j.jhazmat.2018.05.066
doi: 10.1016/j.jhazmat.2018.05.066
9 PÉREZ-VALERA E, DE MELO RANGEL W, ELHOTTOVÁ D. Cattle manure application triggers short-term dominance of Acinetobacter in soil microbial communities[J]. Applied Soil Ecology, 2022, 176: 104466. DOI: 10.1016/j.apsoil.2022.104466
doi: 10.1016/j.apsoil.2022.104466
10 FANG H, WANG H F, CAI L, et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey[J]. Environmental Science & Technology, 2015, 49(2): 1095-1104. DOI: 10.1021/es504157v
doi: 10.1021/es504157v
11 CHEN Q L, AN X L, LI H, et al. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil?[J]. Soil Biology and Biochemistry, 2017, 114: 229-237. DOI: 10.1016/j.soilbio.2017.07.022
doi: 10.1016/j.soilbio.2017.07.022
12 ZHU L, LIAN Y L, LIN D, et al. Insights into microbial contamination in multi-type manure-amended soils: the profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes[J]. Journal of Hazardous Materials, 2022, 437: 129356. DOI: 10.1016/j.jhazmat.2022.129356
doi: 10.1016/j.jhazmat.2022.129356
13 LI J Y, CHEN Q L, LI H L, et al. Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils[J]. Environmental Pollution, 2020, 266: 115399. DOI: 10.1016/j.envpol.2020.115399
doi: 10.1016/j.envpol.2020.115399
14 BLAUSTEIN R A, HILL R L, MICALLEF S A, et al. Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil[J]. Science of the Total Environment, 2016, 539: 583-591. DOI: 10.1016/j.scitotenv.2015.07.108
doi: 10.1016/j.scitotenv.2015.07.108
15 STOCKER M, YAKIREVICH A, GUBER A, et al. Functional evaluation of three manure-borne indicator bacteria release models with multiyear field experiment data[J]. Water, Air, & Soil Pollution, 2018, 229: 181. DOI: 10.1007/s11270-018-3807-0
doi: 10.1007/s11270-018-3807-0
16 庄俐,邹平,麻万诸,等.浙江省典型土壤类型整段标本的采集和制作[J].土壤,2022,54(6):1307-1312. DOI:10.13758/j.cnki.tr.2022.06.027
ZHUANG L, ZOU P, MA W Z, et al. Brief introduction of methods of collecting and making soil monoliths in Zhejiang Province[J]. Soils, 2022, 54(6): 1307-1312. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2022.06.027
17 武淑霞,刘宏斌,黄宏坤,等.我国畜禽养殖粪污产生量及其资源化分析[J].中国工程科学,2018,20(5):103-111. DOI:10.15302/J-SSCAE-2018.05.016
WU S X, LIU H B, HUANG H K, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Strategic Study of CAE, 2018, 20(5): 103-111. (in Chinese with English abstract)
doi: 10.15302/J-SSCAE-2018.05.016
18 陈国和,赵章金,顿雯静,等.浙江省2000年—2016年畜禽养殖业时空分布特征及对环境的影响[J].绍兴文理学院学报,2019,39(1):64-73. DOI:10.16169/j.issn.1008-293x.k.2019.07.009
CHEN G H, ZHAO Z J, DUN W J, et al. Temporal and spatial distribution of livestock and poultry industry and its impact on environment in Zhejiang Province from 2000 to 2016[J]. Journal of Shaoxing University, 2019, 39(1): 64-73. (in Chinese with English abstract)
doi: 10.16169/j.issn.1008-293x.k.2019.07.009
19 宣梦,许振成,吴根义,等.我国规模化畜禽养殖粪污资源化利用分析[J].农业资源与环境学报,2018,35(2):126-132. DOI:10.13254/j.jare.2017.0257
XUAN M, XU Z C, WU G Y, et al. Analysis of utilization of fecal resources in large-scale livestock and poultry breeding in China[J]. Journal of Agricultural Resources and Environment, 2018, 35(2): 126-132. (in Chinese with English abstract)
doi: 10.13254/j.jare.2017.0257
20 CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. DOI: 10.1093/bioinformatics/bty560
doi: 10.1093/bioinformatics/bty560
21 MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. DOI: 10.1093/bioinformatics/btr507
doi: 10.1093/bioinformatics/btr507
22 CHEN Q L, AN X L, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016, 92/93: 1-10. DOI: 10.1016/j.envint.2016.03.026
doi: 10.1016/j.envint.2016.03.026
23 TIAN W, WANG L, LI Y, et al. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen[J]. Agriculture, Ecosystems & Environment, 2015, 213: 219-227. DOI: 10.1016/j.agee.2015.08.009
doi: 10.1016/j.agee.2015.08.009
24 HAN X M, HU H W, CHEN Q L, et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures[J]. Soil Biology and Biochemistry, 2018, 126: 91-102. DOI: 10.1016/j.soilbio.2018.08.018
doi: 10.1016/j.soilbio.2018.08.018
25 HU J L, LIN X G, WANG J H, et al. Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer[J]. Journal of Soils and Sediments, 2011, 11(2): 271-280. DOI: 10.1007/s11368-010-0308-1
doi: 10.1007/s11368-010-0308-1
26 ZHANG H P, ZHANG Q K, SONG J J, et al. Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils[J]. Journal of Hazardous Materials, 2020, 396: 122618. DOI: 10.1016/j.jhazmat.2020.122618
doi: 10.1016/j.jhazmat.2020.122618
27 HEMBACH N, BIERBAUM G, SCHREIBER C, et al. Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: a molecular biology comparison[J]. Environmental Pollution, 2022, 313: 120128. DOI: 10.1016/j.envpol.2022.120128
doi: 10.1016/j.envpol.2022.120128
28 陈铭,丁秀荣,于艳华,等.慢性肝病患者合并解没食子酸链球菌血流感染的临床特征分析[J].北京医学,2021,43(7):628-631. DOI:10.15932/j.0253-9713.2021.07.010
CHEN M, DING X R, YU Y H, et al. Clinical characteristics of bloodstream infection of Streptococcus gallolyticus in patients with chronic liver disease[J]. Beijing Medical Journal, 2021, 43(7): 628-631. (in Chinese with English abstract)
doi: 10.15932/j.0253-9713.2021.07.010
29 张英,武淑霞,雷秋良,等.不同类型粪肥还田对土壤酶活性及微生物群落的影响[J].土壤,2022,54(6):1175-1184. DOI:10.13758/j.cnki.tr.2022.06.011
ZHANG Y, WU S X, LEI Q L, et al. Effects of different manures on soil enzyme activity and microbial community[J]. Soils, 2022, 54(6): 1175-1184. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2022.06.011
30 GU G Y, STRAWN L K, ZHENG J, et al. Diversity and dynamics of Salmonella enterica in water sources, poultry litters, and field soils amended with poultry litter in a major agricultural area of Virginia[J]. Frontiers in Microbiology, 2019, 10: 2868. DOI: 10.3389/fmicb.2019.02868
doi: 10.3389/fmicb.2019.02868
31 WANG H Z, ZHANG T X, WEI G, et al. Survival of Escherichia coli O157:H7 in soils under different land use types[J]. Environmental Science and Pollution Research, 2014, 21(1): 518-524. DOI: 10.1007/s11356-013-1938-9
doi: 10.1007/s11356-013-1938-9
32 MOYNIHAN E L, RICHARDS K G, BRENNAN F P, et al. Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition[J]. Applied Soil Ecology, 2015, 89: 76-84. DOI: 10.1016/j.apsoil.2015.01.011
doi: 10.1016/j.apsoil.2015.01.011
33 XING J J, WANG H Z, BROOKES P C, et al. Soil pH and microbial diversity constrain the survival of E. coli in soil[J]. Soil Biology and Biochemistry, 2019, 128: 139-149. DOI: 10.1016/j.soilbio.2018.10.013
doi: 10.1016/j.soilbio.2018.10.013
34 DENG Y, GUO X, WANG Y W, et al. Terrisporobacter petrolearius sp. nov., isolated from an oilfield petroleum reservoir[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(10): 3522-3526. DOI: 10.1099/ijsem.0.000450
doi: 10.1099/ijsem.0.000450
35 朱永官,彭静静,韦中,等.土壤微生物组与土壤健康[J].中国科学:生命科学,2021,51(1):1-11. DOI:10.1360/SSV-2020-0320
ZHU Y G, PENG J J, WEI Z, et al. Linking the soil microbiome to soil health[J]. Scientia Sinica (Vitae), 2021, 51(1): 1-11. (in Chinese with English abstract)
doi: 10.1360/SSV-2020-0320
[1] 祁通,汤胜,周静杰,马庆旭,吴良欢. 长期覆膜旱作和施用包膜尿素对水稻产量、氮肥利用率及土壤养分的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 109-122.
[2] 陈思民,卢新哲,黄春雷,施加春,徐建明. 强酸性轻度镉污染稻田安全利用技术模式探究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 853-862.
[3] 杨临泽,寿惠霞. 水稻根系分泌物脱氧麦根酸对根际和根内细菌群落组成的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 376-388.
[4] 邵绿扬,陈曦,沈超峰. 纳米零价铁与降解菌联合修复多氯联苯污染土壤效果的研究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 389-397.
[5] 巩文峰,王泽莹,刘金良,孙玉,杨欣欣,魏帅,魏丽萍. 西藏濒危植物巨柏根际细菌群落特征[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 241-252.
[6] 郭晓颖,刘晓霞,王剑,倪玥敏,冷明珠,倪吾钟. 西苕溪流域菜地土壤肥力状况与磷素流失风险[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 85-95.
[7] 麻万诸,朱康莹,卓志清,章明奎. 浙江省海岛丘陵土壤的发生特点与系统分类归属[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 96-104.
[8] 温明霞,奚辉,吴韶辉,李娜,陈喜靖. 滴灌施肥对山地柑橘园生产效应的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 566-572.
[9] 俞巧钢,黄郑宸,叶静,孙万春,林辉,王强,王峰,马军伟. 复合生化抑制剂对稻田氮素转化和水稻生长的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 635-643.
[10] 万清,杨小渔,吴丹,张奇春. 沙棘果渣还田对水稻土性质、温室气体排放和微生物数量的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 483-492.
[11] 金杏丽,何金涛,蔡永良,李坤峰,陈乐阳,鲁兴萌,邵勇奇. 浙江省桑园土壤病原菌及其微生态调查[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 493-503.
[12] 杜颐林, 梁嘉斌, 郭心雨, 罗继鹏, 刘苑坤, 牟鲯璃, 李廷强. 大气二氧化碳浓度升高对农田土壤硝化作用的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 504-516.
[13] 邓小东,王宏全. 土壤水分微波遥感反演算法及应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 289-302.
[14] 巩龙达,陈凯,李丹,蔡梅,王京文,张奇春. 复合钝化剂施用水平对镉污染农田土壤的修复效果[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 359-368.
[15] 罗金燕,郑锡良,戚行江,张淑文,俞浙萍,任海英. 杨梅衰弱病发生测报模型的建立[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 163-171.