Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (2): 241-252    DOI: 10.3785/j.issn.1008-9209.2022.03.071
资源利用与环境保护     
西藏濒危植物巨柏根际细菌群落特征
巩文峰1(),王泽莹2,刘金良3,孙玉1,杨欣欣2,魏帅2,魏丽萍2()
1.西藏农牧学院植物科学学院, 西藏 林芝 860000
2.西藏农牧学院资源与环境学院, 西藏 林芝 860000
3.西北农林科技大学林学院, 陕西 杨凌 712100
Characteristics of the rhizosphere bacterial community of endangered plant Cupressus gigantea in Tibet
Wenfeng GONG1(),Zeying WANG2,Jinliang LIU3,Yu SUN1,Xinxin YANG2,Shuai WEI2,Liping WEI2()
1.College of Plant Sciences, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, Xizang, China
2.College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, Xizang, China
3.College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, China
 全文: PDF(4273 KB)   HTML
摘要:

根际微生物在植物生长和环境适应中起着重要的作用。为揭示西藏濒危珍稀植物巨柏根际细菌群落特征,通过16S rRNA基因扩增子高通量测序技术,并结合土壤化学特性,分析西藏林芝市巴宜区、米林县、朗县3个种群巨柏根际细菌的组成、多样性及影响因子。结果显示:巨柏根际细菌多样性丰富,其中优势菌门为放线菌门(Actinobacteriota)、变形菌门(Proteobacteria)和酸杆菌门(Acidobacteriota)。朗县、巴宜区和米林县巨柏根际细菌共有属为757个(65.83%),独有属分别为125个(10.87%)、39个(3.39%)和41个(3.56%);基于Bray-Curtis距离的非度量多维尺度的β多样性分析显示,不同种群间根际细菌群落差异显著。细菌群落的共现性网络正相关连接均在68%以上,表明群落间合作关系大于竞争关系。土壤中有效磷、全磷、铵态氮是驱动根际细菌群落结构变化的重要因子。为适应不同生长环境,各种群巨柏形成了特有的根际细菌群落。本研究结果可为探究根际微生物在巨柏生长和环境适应中的作用及保护巨柏植物资源提供参考。

关键词: 巨柏根际细菌群落结构土壤化学特性    
Abstract:

Rhizosphere microorganisms play an important role in plant growth and adaptation to the environment. In order to reveal the characteristics of rhizosphere bacterial community of endangered plant Cupressus gigantea in Tibet, we employed 16S rRNA gene high-throughput amplicon sequencing technology combined with soil chemical properties to examine the rhizosphere bacterial composition and diversity in Bayi District, Milin County, and Langxian County of Nyingchi City in Tibet and their influencing factors. The results showed that the diversity of bacteria in the rhizosphere of C. gigantea was rich, and the dominant bacterial phylum were Actinobacteriota, Proteobacteria, and Acidobacteriota. There were 757 shared genera (65.83%) of rhizosphere bacteria in C. gigantea in Langxian County, Bayi District, and Milin County, with 125 (10.87%), 39 (3.39%) and 41 (3.56%) unique genera, respectively, and the β-diversity analysis of non-metric multidimensional scaling based on Bray-Curtis distance revealed significant differences among populations. The positive correlation of the co-occurrence network of bacterial communities was more than 68%, and the cooperative relationship was greater than the competitive relationship. Soil available phosphorus (AP), total phosphorus (TP), and ammonium nitrogen (NH4+-N) were important factors driving changes in the structure of rhizosphere bacterial community. In order to adapt to different growth environments, various groups of C. gigantea have formed unique rhizosphere bacterial communities. The above results can provide a reference for studying the role of rhizosphere microorganisms in the growth and environmental adaptation of C. gigantea and the protection of C. gigantea resources.

Key words: Cupressus gigantea    rhizosphere bacteria    community structure    soil chemical characteristics
收稿日期: 2022-03-07 出版日期: 2023-04-25
CLC:  Q938.1  
基金资助: 西藏农牧学院林学学科创新团队建设项目(藏财预指2020-001);2022年度西北农林科技大学-西藏农牧学院科研联合基金项目(XNLH2022-02);西藏高原生态安全联合重点实验室研究生开放基金项目(STAQ-2021Y-11)
通讯作者: 魏丽萍     E-mail: zkxygwf@xza.edu.cn;34984262@qq.com
作者简介: 巩文峰(https://orcid.org/0000-0002-3168-5052),E-mail:zkxygwf@xza.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
巩文峰
王泽莹
刘金良
孙玉
杨欣欣
魏帅
魏丽萍

引用本文:

巩文峰,王泽莹,刘金良,孙玉,杨欣欣,魏帅,魏丽萍. 西藏濒危植物巨柏根际细菌群落特征[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 241-252.

Wenfeng GONG,Zeying WANG,Jinliang LIU,Yu SUN,Xinxin YANG,Shuai WEI,Liping WEI. Characteristics of the rhizosphere bacterial community of endangered plant Cupressus gigantea in Tibet. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 241-252.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.03.071        https://www.zjujournals.com/agr/CN/Y2023/V49/I2/241

图1  3个种群巨柏根际细菌组成及差异分析*表示在P<0.05水平差异有统计学意义。

采样点

Sampling site

编号

Serial number

纬度

Latitude (N)

经度

Longitude (E)

海拔

Altitude/m

胸径

Diameter at breast height/m

生境

Habitat

主要伴生种

Main associated species

巴宜区

Bayi District

(BY)

129°3736.9494°2357.733 105.000.12

高山峡谷半

阳坡沙质土

疏林地

绢毛蔷薇(Rosa sericea)、二色锦鸡儿(Caragana bicolor)、楔叶绣线菊(Spiraea canescens)等
229°3736.2294°2355.063 064.000.15
329°3732.6494°2359.753 068.000.24
429°3730.6994°2404.343 068.000.77
529°3738.5494°2356.183 128.001.27
629°3723.6694°2407.463 063.001.50
729°3729.8894°2329.193 003.001.78
829°3738.5194°2357.583 126.001.87
929°3737.7794°2357.513 116.002.44

朗县

Langxian County

(LX)

128°5935.5793°1823.403 030.000.10

高山峡谷阳

坡沙质土疏

林地

砂生槐(Sophora moorcroftiana)、西藏野丁香(Leptodermis xizangensis)、猪毛蒿(Artemisia scoparia)、木帚栒子(Cotoneaster dielsianus)、米林蔓黄芪(Phyllolobium milingense)、翅果蓼(Fagopyrum tibeticum)等
228°5909.0093°1400.673 002.000.13
329°0403.8493°0437.603 088.000.50
429°0403.8893°0436.503 068.000.57
529°0402.6993°0438.763 100.000.72
628°5932.6693°1823.123 076.000.98
729°0402.3793°0438.393 100.001.61
829°0047.7093°1900.883 014.002.25
929°0419.8893°2311.803 030.003.00

米林县

Milin County

(ML)

129°0739.9093°4849.273 063.000.20

高山峡谷阳

坡沙质土疏

林地

高山松(Pinus densata)、砂生槐(Sophora moorcroftiana)、西南野丁香(Leptodermis purdomii)、烦果小檗(Berberis ignorata )、二色锦鸡儿(Caragana bicolor)、川藏香茶菜(Isodon pharicus)等
229°0524.8093°2359.603 115.000.37
329°0904.3693°2755.242 982.000.45
429°0839.8093°2745.003 057.000.87
529°0524.8093°2359.603 115.001.03
629°0839.8093°2745.003 057.001.38
729°0839.8093°2745.003 057.001.67
829°0733.2293°5111.803 046.002.06
929°0732.7993°5111.503 050.002.29
表1  采样点基本信息

土壤化学因子

Soil chemical factor

LXMLBY

F

F value

p

p-value

SOM/(g/kg)6.73±1.01b16.53±3.73a23.01±1.76a11.180.00**
SOC/(g/kg)3.91±0.59b9.61±2.17a13.38±1.02a11.180.00**
AP/(mg/kg)1.76±0.36a2.94±0.88a4.19±0.84a2.770.08
TP/(g/kg)0.45±0.01b0.62±0.02a0.60±0.02a22.390.00**
NO3-N/(mg/kg)14.37±0.79a13.79±0.22a15.01±0.59a1.100.35
NH4+-N/(mg/kg)1.23±0.30b6.79±1.99a7.82±1.34a6.450.01**
TN/(g/kg)0.17±0.02c1.34±0.21a0.55±0.03b23.160.00**
AK/(g/kg)0.10±0.02b0.21±0.05b0.42±0.05a14.370.00**
TK/(g/kg)5.64±0.19b6.32±0.35b11.65±0.27a140.410.00**
C/N22.55±3.42a6.50±1.04b25.63±3.68a12.040.00**
C/P9.00±1.56b15.15±3.41b21.92±0.83a8.500.00**
N/P0.39±0.04b2.17±0.35a0.93±0.07b19.260.00**
pH8.04±0.03a7.71±0.09b7.92±0.01a8.930.00**
表2  3个种群巨柏根际土壤化学特征
图2  巨柏根际细菌属水平的维恩图

采样点

Sampling site

序列数

Reads

Shannon指数

Shannon index

Simpson指数

Simpson index

ACE指数

ACE index

Chao指数

Chao index

测序覆盖率

Sequencing coverage/%

BY50 549±7 780a6.09±0.34a0.01±0.00a3 172.07±418.29a2 943.76±351.59a97.23±0.38a
ML42 647±4 604b6.07±0.31a0.01±0.00a3 073.91±642.93a2 862.10±609.85a97.30±0.67a
LX43 583±4 309b6.13±0.24a0.01±0.00a2 901.28±610.86a2 873.82±613.99a97.32±0.67a
表3  巨柏根际细菌菌群 α 多样性分析
图3  基于Bray-Curtis距离的非度量多维尺度的 β 多样性分析Adonis:应力值 Stress value=0.15;R2=0.12;p=0.01。
图4  3个种群巨柏根际细菌网络分析A. 3个种群巨柏根际细菌网络图;B. 3个种群巨柏根际细菌节点在模块内(Zi)和模块间(Pi)的连通性。
网络拓扑结构 Network topologyBYLXML
节点 Node2 4052 4972 295
边 Side63 48662 15691 505
子网络 Sub-network141518
模块化系数 Modularity factor0.410.480.37
传递系数 Carry-over factor0.420.420.49
网络密度 Network density0.020.020.04
网络直径 Network diameter4.924.945.82
网络平均直径 Network mean diameter3.113.142.97
正相关连接 Positive correlation connection/%68.9868.9272.40
负相关连接 Negative correlation connection/%31.0231.0827.60
表4  巨柏根际细菌群落网络特征
图5  土壤化学因子与巨柏根际细菌门的皮尔逊相关性分析*表示在P<0.05水平显著相关;**表示在P<0.01水平极显著相关。n=27。
图6  土壤化学因子与巨柏根际细菌OTUs的冗余分析图中红色点表示样本组;黑色箭头表示OTUs,红色箭头表示数量型土壤化学因子,箭头长短代表各因子对根际细菌群落的影响程度(解释量)。

土壤化学因子

Soil chemical factor

RDA 1RDA 2r2

p

p-value

AK-1.00-0.120.210.04
TK-0.70-0.720.290.02
AP-1.00-0.000.560.00
TP-0.93-0.360.490.00
NO3-N-0.960.270.020.82
NH4+-N-0.67-0.740.450.00
C/N-0.680.730.060.43
N/P-0.89-0.460.380.01
pH0.800.600.230.03
表5  土壤化学因子冗余分析
1 WANG X L, WANG M X, XIE X G, et al. An amplification-selection model for quantified rhizosphere microbiota assembly[J]. Science Bulletin, 2020, 65(12): 983-986. DOI: 10.1016/j.scib.2020.03.005
doi: 10.1016/j.scib.2020.03.005
2 POHJANEN J, KOSKIMÄKI J J, SUTELA S, et al. Interac-tion with ectomycorrhizal fungi and endophytic Methylobac-terium affects nutrient uptake and growth of pine seedlings in vitro [J]. Tree Physiology, 2014, 34(9): 993-1005. DOI: 10.1093/treephys/tpu062
doi: 10.1093/treephys/tpu062
3 SINGH R P, JHA P N. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants[J]. Frontiers in Microbiology, 2017, 8: 1945. DOI: 10.3389/fmicb.2017.01945
doi: 10.3389/fmicb.2017.01945
4 SAMAD A, TROGNITZ F, COMPANT S, et al. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants[J]. Environmental Microbiology, 2017, 19(4): 1407-1424. DOI: 10.1111/1462-2920.13618
doi: 10.1111/1462-2920.13618
5 ZHANG R F, VIVANCO J M, SHEN Q R. The unseen rhizosphere root-soil-microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017, 37: 8-14. DOI: 10.1016/j.mib.2017.03.008
doi: 10.1016/j.mib.2017.03.008
6 ZHOU Y, ZHU H H, FU S L, et al. Variation in soil microbial community structure associated with different legume species is greater than that associated with different grass species[J]. Frontiers in Microbiology, 2017, 8: 1007. DOI: 10.3389/fmicb.2017.01007
doi: 10.3389/fmicb.2017.01007
7 ZHOU J Z, DENG Y, SHEN L N, et al. Temperature mediates continental-scale diversity of microbes in forest soils[J]. Nature Communications, 2016, 7: 12083. DOI: 10.1038/ncomms12083
doi: 10.1038/ncomms12083
8 LIU H W, BRETTELL L E, QIU Z G, et al. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8): 733-743. DOI: 10.1016/j.tplants.2020.03.014
doi: 10.1016/j.tplants.2020.03.014
9 曹鹏熙,刘怡萱,许国琪,等.冰川棘豆(Oxytropis glacialis)根系土壤细菌多样性特征[J].生态学报,2020,40(14):4954-4965. DOI:10.5846/stxb201907311624
CAO P X, LIU Y X, XU G Q, et al. Bacterial diversity in the root system soil of Oxytropis glacialis [J]. Acta Ecologica Sinica, 2020, 40(14): 4954-4965. (in Chinese with English abstract)
doi: 10.5846/stxb201907311624
10 MITRA D, UNIYAL N, SHARMA K, et al. Isolation and impacts of rhizobacteria from Saussurea obvallata (DC.) Edgew. (Brahma Kamal)[J]. Biologica Nyssana, 2020, 11(1): 35-44. DOI: 10.5281/zenodo.4060292
doi: 10.5281/zenodo.4060292
11 郑维列,薛会英,罗大庆,等.巨柏种群的生态地理分布与群落学特征[J].林业科学,2007,43(12):8-15. DOI:10.3321/j.issn:1001-7488.2007.12.002
ZHENG W L, XUE H Y, LUO D Q, et al. Eco-geographic distribution and coenology characteristics of Cupressus gigantea [J]. Scientia Silvae Sinicae, 2007, 43(12): 8-15. (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-7488.2007.12.002
12 王景升,郑维列,潘刚.巨柏种子活力与濒危的关系[J].林业科学,2005,41(4):37-41. DOI:10.11707/j.1001-7488.20050407
WANG J S, ZHENG W L, PAN G. Relation between being endangered and seed vigor about Cupressus gigantea in Tibet[J]. Scientia Silvae Sinicae, 2005, 41(4): 37-41. (in Chinese with English abstract)
doi: 10.11707/j.1001-7488.20050407
13 兰小中,廖志华,王景升.西藏高原濒危植物西藏巨柏光合作用日进程[J].生态学报,2005,25(12):3172-3175. DOI:10.3321/j.issn:1000-0933.2005.12.008
LAN X Z, LIAO Z H, WANG J S. The diurnal course of photosynthesis of the endangered species Tibetan Cupressus gigantea in Tibet Plateau[J]. Acta Ecologica Sinica, 2005, 25(12): 3172-3175. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2005.12.008
14 LI S K, QIAN Z Q, FU Y R, et al. Isolation and characterization of polymorphic microsatellites in the Tibetan cypress Cupressus gigantea using paired-end Illumina shotgun sequencing[J]. Conservation Genetics Resources, 2014, 6(3): 795-797. DOI: 10.1007/s12686-014-0222-8
doi: 10.1007/s12686-014-0222-8
15 YANG B, KANG X C, BRÄUNING A, et al. A 622-year regional temperature history of southeast Tibet derived from tree rings[J]. The Holocene, 2010, 20(2): 181-190. DOI: 10.1177/0959683609350388
doi: 10.1177/0959683609350388
16 XU T T, ABBOTT R J, MILNE R I, et al. Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions[J]. BMC Evolutionary Biology, 2010, 10: 194. DOI: 10.1186/1471-2148-10-194
doi: 10.1186/1471-2148-10-194
17 VENTURI V, KEEL C. Signaling in the rhizosphere[J]. Trends in Plant Science, 2016, 21(3): 187-198. DOI: 10.1016/j.tplants.2016.01.005
doi: 10.1016/j.tplants.2016.01.005
18 FITZPATRICK C R, SALAS-GONZÁLEZ I, CONWAY J M, et al. The plant microbiome: from ecology to reductionism and beyond[J]. Annual Review of Microbiology, 2020, 74: 81-100. DOI: 10.1146/annurev-micro-022620-014327
doi: 10.1146/annurev-micro-022620-014327
19 秦媛,潘雪玉,靳微,等.杨树人工林土壤微生物群落4种提取方法比较[J].林业科学,2018,54(9):169-176. DOI:10.11707/j.1001-7488.20180919
QIN Y, PAN X Y, JIN W, et al. Comparison of four extraction methods of soil micorobiome in poplar plantation[J]. Scientia Silvae Sinicae, 2018, 54(9): 169-176. (in Chinese with English abstract)
doi: 10.11707/j.1001-7488.20180919
20 SCHULZ E. Influence of extreme management on decom-posable soil organic matter pool[J]. Archives of Agronomy and Soil Science, 2002, 48(2): 101-105. DOI: 10.1080/03650340214166
doi: 10.1080/03650340214166
21 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
22 ISLAM K R, WEIL R R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh[J]. Agriculture, Ecosystems & Environment, 2000, 79(1): 9-16. DOI: 10.1016/S0167-8809(99)00145-0
doi: 10.1016/S0167-8809(99)00145-0
23 TONG A Z, LIU W, LIU Q, et al. Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modes and ages[J]. BMC Microbiology, 2021, 21: 18. DOI: 10.1186/s12866-020-02081-2
doi: 10.1186/s12866-020-02081-2
24 CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. DOI: 10.1093/bioinformatics/bty560
doi: 10.1093/bioinformatics/bty560
25 MAGOČ T, SALZBERG S L. FLASH: fast length adjust-ment of short reads to improve genome assemblies[J]. Bioinfor-matics, 2011, 27(21): 2957-2963. DOI: 10.1093/bioinformatics/btr507
doi: 10.1093/bioinformatics/btr507
26 EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998. DOI: 10.1038/nmeth.2604
doi: 10.1038/nmeth.2604
27 WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267. DOI: 10.1128/AEM.00062-07
doi: 10.1128/AEM.00062-07
28 OKSANEN J. Vegan: an introduction to ordination[CP/OL]. [2022-03-01].
29 CSÁRDI G, NEPUSZ T. The igraph software package for complex network research[J]. InterJournal of Complex Systems, 2006, 1695(5): 1-9.
30 BASTIAN M, HEYMANN S, JACOMY M. Gephi: an open source software for exploring and manipulating networks[C]//Proceedings of the Third International AAAI Conference on Weblogs and Social Media, San Jose, California, 2009. [S. l.: s. n.], 2009: 361-362.
31 SHI S J, NUCCIO E E, SHI Z J, et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages[J]. Ecology Letters, 2016, 19(8): 926-936. DOI: 10.1111/ele.12630
doi: 10.1111/ele.12630
32 边喜丽,杨小林,李永霞,等.藏东南巨柏根系结构特征与环境因子研究[J].四川大学学报(自然科学版),2018,55(4):848-852. DOI:10.3969/j. issn.0490-6756.2018.04.031
BIAN X L, YANG X L, LI Y X, et al. Analysis of effect factors on the root architecture of Cupressus Gigantea (Southeast Tibet)[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55(4): 848-852. (in Chinese with English abstract)
doi: 10.3969/j. issn.0490-6756.2018.04.031
33 王宇姝,盛海彦,罗莎莎,等.环青海湖4种生境土壤中原核微生物群落结构及分子网络特征[J].生态环境学报,2021,30(7):1393-1403. DOI:10.16258/j.cnki.1674-5906.2021.07.008
WANG Y S, SHENG H Y, LUO S S, et al. Characteristics of prokaryotic microbial community structure and molecular ecological network in four habitat soils around Lake Qinghai[J]. Ecology and Environmental Sciences, 2021, 30(7): 1393-1403. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2021.07.008
34 XIE H W, WANG M Y, ZENG H Y, et al. Improvement of black-odor water by Pichia strain GW1 under optimized NH3-N degradation conditions[J]. BioMed Research Inter-national, 2020, 2020: 1537873. DOI: 10.1155/2020/1537873
doi: 10.1155/2020/1537873
35 杨安娜,陆云峰,张俊红,等.杉木人工林土壤养分及酸杆菌群落结构变化[J].林业科学,2019,55(1):119-127. DOI:10.11707/j.1001-7488.20190114
YANG A N, LU Y F, ZHANG J H, et al. Changes in soil nutrients and acidobacteria community structure in Cun-ninghamia lanceolata plantations[J]. Scientia Silvae Sinicae, 2019, 55(1): 119-127. (in Chinese with English abstract)
doi: 10.11707/j.1001-7488.20190114
36 YOUSUF B, KESHRI J, MISHRA A, et al. Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea [J]. Gene, 2012, 506(1): 18-24. DOI: 10.1016/j.gene.2012.06.083
doi: 10.1016/j.gene.2012.06.083
37 LIU L L, HUANG X Q, ZHANG J B, et al. Deciphering the relative importance of soil and plant traits on the develop-ment of rhizosphere microbial communities[J]. Soil Biology and Biochemistry, 2020, 148: 107909. DOI: 10.1016/j.soilbio.2020.107909
doi: 10.1016/j.soilbio.2020.107909
38 LAYEGHIFARD M, HWANG D M, GUTTMAN D S. Disentangling interactions in the microbiome: a network perspective[J]. Trends in Microbiology, 2017, 25(3): 217-228. DOI: 10.1016/j.tim.2016.11.008
doi: 10.1016/j.tim.2016.11.008
39 李金业,陈庆锋,李青,等.黄河三角洲滨海湿地微生物多样性及其驱动因子[J].生态学报,2021,41(15):6103-6114. DOI:10.5846/stxb202006041445
LI J Y, CHEN Q F, LI Q, et al. Analysis of microbial diversity and driving factors in coastal wetlands of the Yellow River Delta[J]. Acta Ecologica Snica, 2021, 41(15): 6103-6114. (in Chinese with English abstract)
doi: 10.5846/stxb202006041445
40 孟凡凡,胡盎,王建军.微生物性状揭示物种分布格局、群落构建机制和生态系统功能[J].微生物学报,2020,60(9):1784-1800. DOI:10.13343/j.cnki.wsxb.20200282
MENG F F, HU A, WANG J J. Microbial traits shed light on species distributions, assembly processes and ecosystem functions[J]. Acta Microbiologica Sinica, 2020, 60(9): 1784-1800. (in Chinese with English abstract)
doi: 10.13343/j.cnki.wsxb.20200282
[1] 彭彩云,王戈,赵波,廖兴艳,张健,肖玖金,母晨君. 长江上游典型人工植被下中小型土壤动物群落结构特征[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 585-595.
[2] 辛福梅,王玉婷,李生茂,旦增罗布,普布次仁. 不同温度对巨柏幼苗光合及生根的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 102-108.
[3] 李戌清,张雅,田忠玲,吴根良. 茄子连作与轮作土壤养分、酶活性及微生物群落结构差异分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 561-569.
[4] 徐晨光, 张奇春*, 侯昌萍. 外源抗生素对茶园土壤微生物群落结构的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 75-84.
[5] 唐璐, 牛成镇, 吕镇梅*. 土霉素对活性污泥微生物群落结构的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 545-555.
[6] 肖玖金1,2, 黄晓丽1, 卢昌泰1, 郑家东1, 张健2*, 杨万勤2. 坡位对猕猴桃园土壤动物群落结构的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 421-427.
[7] 李艳丽, 陈列忠*. 聚合酶链反应-变性梯度凝胶电泳分析在毒死蜱胁迫下土壤真菌群落结构演替[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 381-386.
[8] 程红梅;杨青山;吴旺宝;谭海霞;田兴军. 安徽省紫蓬山栓皮栎林的物种组成及更新特征[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 639-646.
[9] 申燕,郑子成,李廷轩;. 茶园土壤动物群落特征及其与土壤理化特性的关系[J]. 浙江大学学报(农业与生命科学版), 2010, 36(5): 503-512.
[10] 徐敏 骆争荣 于明坚 丁炳扬 吴友贵 . 百山祖北坡中山常绿阔叶林的物种组成和群落结构 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(4): 450-457.