Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (4): 493-503    DOI: 10.3785/j.issn.1008-9209.2021.11.261
资源利用与环境保护     
浙江省桑园土壤病原菌及其微生态调查
金杏丽1(),何金涛2,蔡永良3,李坤峰4,陈乐阳5,鲁兴萌2,邵勇奇2()
1.德清县农业技术推广中心,浙江 湖州 313200
2.浙江大学动物科学学院蚕蜂研究所,杭州 310058
3.德清县莫干天竺蚕种有限 责任公司,浙江 湖州 313204
4.浙江大学农业试验站,杭州 310058
5.金华市农业农村局,浙江 金华 321017
Investigation on soil pathogenic microbes and their microecology in Zhejiang mulberry fields
Xingli JIN1(),Jintao HE2,Yongliang CAI3,Kunfeng LI4,Leyang CHEN5,Xingmeng LU2,Yongqi SHAO2()
1.Agricultural Technology Extension Center of Deqing County, Huzhou 313200, Zhejiang, China
2.Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
3.Mogan Tianzhu Silkworm Breeding Co. , Ltd. of Deqing County, Huzhou 313204, Zhejiang, China
4.Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
5.Jinhua Agriculture and Rural Bureau, Jinhua 321017, Zhejiang, China
 全文: PDF(3172 KB)   HTML
摘要:

桑椹菌核病是果桑生产中的重要病害。为了解桑园土壤中病原菌的存在情况及其微生态,分别从浙江4个地域[德清县(DQ)、长兴县(CX)以及金华市多湖街道(JD)和江东镇(JJ),其中长兴桑园采用大棚栽培,其他为露地栽培]及四川1个地域[对照(CK),极少或未发生桑椹菌核病]的桑园采集土壤样本,并对样本中的真菌和细菌进行内转录间隔区(internal transcribed spacer, ITS)和16S rRNA基因高通量测序。结果表明:德清(DQ)、江东(JJ)及多湖(JD)3个桑园土壤的菌核病病原杯盘菌属(Ciboria)的相对丰度分别为28.84%、60.17%、70.15%,未见桑椹菌核病病果的长兴(CX)和四川(CK)桑园土壤分别为0.02%和0.06?。长兴(CX)桑园土壤的主要真菌类群为被孢霉属(Mortierella)、毛壳菌属(Chaetomium)和腐质霉属(Humicola),其相对丰度分别为36.46%、21.59%、15.93%;四川(CK)桑园土壤的主要真菌类群为青霉属(Penicillium)、镰刀菌属(Fusarium)和Fusicolla,其相对丰度分别为24.05%、15.35%、9.75%。各桑园土壤的细菌多样性丰富,其中假单胞菌属(Pseudomonas)是唯一在5个地域桑园土壤样本中均有可鉴定序列的细菌,但相对丰度最高的江东(JJ)桑园土壤也仅有6.81%。综上所述,杯盘菌属的相对丰度、真菌和细菌的多样性既揭示了桑园土壤菌核病病原与土壤微生态之间的复杂关系,也暗示了通过改变土壤微生态结构来防控桑椹菌核病的可能性。

关键词: 桑椹菌核病杯盘菌属土壤微生态    
Abstract:

Mulberry sclerotial disease is a devastating disease in mulberry production. In order to understand the existent situation of pathogens and their microecology in the soil of the mulberry field, we collected the soil samples from mulberry fields in four plots of different regions in Zhejiang Province [namely Deqing County (DQ), Changxing County (CX), Jinhua Duohu Residential District (JD) and Jiangdong Town (JJ)]. Among them, CX mulberries were cultivated in greenhouse, and the others were cultivated in open field. The experiment took one plot in Sichuan Province as a control (CK), which was rarely or never found the sclerotial disease. Then, we identified the soil fungi and bacteria through high-throughput sequencing of internal transcribed spacer (ITS) and 16S rRNA. The results showed that the relative abundance (RA) of genus Ciboria in the mulberry fields of DQ, JJ and JD were 28.84%, 60.17%, and 70.15%, respectively. No diseased fruit of mulberry sclerotinia was found in CX and CK fields, and the relative abundance of Ciboria was 0.02% and 0.06?, respectively. The main microorganisms in CX field were Mortierella, Chaetomium, and Humicola, with the relative abundance of 36.46%, 21.59%, and 15.93%, respectively; the main microorganisms in CK field were Penicillium, Fusarium, and Fusicolla, and their relative abundances were 24.05%, 15.35%, and 9.75%, respectively. Among the bacteria, Pseudomonas was the only genus identified in all five field samples, and the highest relative abundance of Pseudomonas was found in the JJ field (but only 6.81%), highlighting a rich bacterial diversity. Collectively, the relative abundance of the genus Ciboria and the diversity of fungi and bacteria reveal the complex relationship between the relative abundance of Ciboria and the soil microecology in mulberry fields. It also further implies the possibility of preventing and controlling mulberry sclerotial disease by changing the soil microecological structure.

Key words: mulberry fruit    sclerotial disease    Ciboria    soil microecology
收稿日期: 2021-11-26 出版日期: 2022-09-03
CLC:  S 888.2  
基金资助: 国家自然科学基金项目(32022081);财政部和农业农村部国家现代农业产业技术体系项目(CARS-18-ZJ0302);浙江省蚕蜂资源利用与创新研究重点实验室项目(2020E10025);浙江省蚕桑产业技术团队项目“果桑减肥减药绿色安全技术示范”(2018);浙江省湖州市公益性农业项目(2020GZ23)
通讯作者: 邵勇奇     E-mail: 346382580@qq.com;yshao@zju.edu.cn
作者简介: 金杏丽(https://orcid.org/0000-0002-3676-8076),E-mail:346382580@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
金杏丽
何金涛
蔡永良
李坤峰
陈乐阳
鲁兴萌
邵勇奇

引用本文:

金杏丽,何金涛,蔡永良,李坤峰,陈乐阳,鲁兴萌,邵勇奇. 浙江省桑园土壤病原菌及其微生态调查[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 493-503.

Xingli JIN,Jintao HE,Yongliang CAI,Kunfeng LI,Leyang CHEN,Xingmeng LU,Yongqi SHAO. Investigation on soil pathogenic microbes and their microecology in Zhejiang mulberry fields. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 493-503.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.11.261        https://www.zjujournals.com/agr/CN/Y2022/V48/I4/493

采样点

Sampling plot

真菌OTU数目 Fungal OTU number细菌OTU数目 Bacterial OTU number
RA>1.0%0.1%≤RA≤1.0%

总数

Total

RA>1.0%0.1%≤RA≤1.0%

总数

Total

JD7.424.295.221.0134.4558.6
JJ8.222.4101.823.0109.0494.8
DQ10.023.683.424.0104.6441.8
CX7.018.870.623.0115.2495.0
CK12.640.8141.424.6120.2495.0
表1  不同桑园土壤样本中可鉴定的真菌和细菌种类(OTU数目)
图1  不同桑园土壤样本的真菌微生态结构(RA)
图2  不同桑园土壤样本的细菌微生态结构(RA)
图3  不同桑园土壤样本中的真菌在不同RA范围可鉴定的OTU数目比较A. RA>1.0%的真菌;B. 0.1%≤RA≤1.0%的真菌;C.所有的真菌。*表示在P<0.05水平差异有统计学意义,**表示在P<0.01水平差异有高度统计学意义(下同)。
图4  不同桑园土壤样本中的细菌在不同RA范围可鉴定的OTU数目比较A. RA>1.0%的细菌;B. 0.1%≤RA≤1.0%的细菌;C.所有的细菌。
图5  不同桑园土壤样本中杯盘菌属( Ciboria )真菌的RA
图6  不同桑园土壤样本中青霉属( Penicillium )(A)和镰刀菌属( Fusarium )(B)真菌的RA
图7  不同桑园土壤样本中被孢霉菌属( Mortierella )(A)、毛壳菌属( Chaetomium )(B)和腐质霉属( Humicola )(C)真菌的RA
图8  不同桑园土壤样本中 Pseudaleuria (A)、木霉属( Trichoderma )(B)和隐球菌属( Cryptococcus )(C)真菌的RA
图9  不同桑园土壤样本中假单胞菌属( Pseudomonas )(A)、蓝细菌门(Cyanobacteria)(B)和酸杆菌门(Acidobacteria)(C)可鉴定序列细菌的RA比较
图10  不同桑园土壤样本中6个高频出现的细菌属的RA比较
1 薛忠民,苏超,焦锋,等.桑椹肥大性菌核病发生的影响因素调查及化学防治试验[J].蚕业科学,2015,41(2):226-233. DOI:10.13441/j.cnki.cykx.2015.02.005
XUE Z M, SU C, JIAO F, et al. Survey on influencing factors of mulberry fruit hypertrophic sclerote disease occurrence and chemical control test on it[J]. Science of Sericulture, 2015, 41(2): 226-233. (in Chinese with English abstract)
doi: 10.13441/j.cnki.cykx.2015.02.005
2 LU¨ R H, ZHAO A C, LI J, et al. Screening, cloning and expression analysis of a cellulase derived from the causative agent of hypertrophy sorosis scleroteniosis, Ciboria shiraiana [J]. Gene, 2015, 565(2): 221-227. DOI:10.1016/j.gene.2015.04.018
doi: 10.1016/j.gene.2015.04.018
3 BAO L J, GAO H P, ZHENG Z L, et al. Integrated transcriptomic and un-targeted metabolomics analysis reveals mulberry fruit (Morus atropurpurea) in response to sclerotiniose pathogen Ciboria shiraiana infection[J]. International Journal of Molecular Sciences, 2020, 21(1789): 1-18. DOI:10.3390/ijms21051789
doi: 10.3390/ijms21051789
4 HONG S K, KIM W G, SUNG G B, et al. Identification and distribution of two fungal species causing sclerotial disease on mulberry fruits in Korea[J]. Mycobiology, 2007, 35(2): 87-90. DOI:10.4489/MYCO.2007.35.2.087
doi: 10.4489/MYCO.2007.35.2.087
5 王国良.桑椹菌核病菌多样性调查[J].菌物研究,2009,7(3/4):189-192. DOI:10.13341/j.jfr.2009.z1.011
WANG G L. Diversity investigation of mulberry sclerotiniose pathogen[J]. Journal of Fungal Research, 2009, 7(3/4): 189-192. (in Chinese with English abstract)
doi: 10.13341/j.jfr.2009.z1.011
6 DAI F W, WANG Z J, LI Z Y, et al. Transcriptomic and proteomic analyses of mulberry (Morus atropurpurea) fruit response to Ciboria carunculoides [J]. Journal of Proteomics, 2019, 193: 142-153. DOI:10.1016/j.jprot.2018.10.004
doi: 10.1016/j.jprot.2018.10.004
7 王爱印.桑椹菌核病病原菌的分离、 ‍鉴定及其拮抗性桑树内生菌的研究[D].重庆:西南大学,2016.
WANG A Y. Isolation and identification of the pathogens of mulberry fruit sclerote disease and research on their antagonastic endophyte[D]. Chongqing: Southwest University, 2016. (in Chinese with English abstract)
8 吕蕊花,赵爱春,王茜龄,等.桑椹缩小性菌核病病原菌的分类和生物学特性及抑菌药剂筛选[J].蚕业科学,2012,38(4):603-609. DOI:10.13441/j.cnki.cykx.2012.04.006
LÜ R H, ZHAO A C, WANG X L, et al. Classification and biological characteristics of the pathogen causing reduced sorosis scleroteniosis on mulberry fruit and screening of bacteriostatic agent against it[J]. Science of Sericulture, 2012, 38(4): 603-609. (in Chinese with English abstract)
doi: 10.13441/j.cnki.cykx.2012.04.006
9 蒯元璋,吴福安.桑椹菌核病病原及病害防治技术综述[J].蚕业科学,2012,38(6):1099-1104. DOI:10.13441/j.cnki.cykx.2012.06.028
KUAI Y Z, WU F A. A review on pathogens of mulberry fruit sclerotiniosis and its control technology[J]. Science of Sericulture, 2012, 38(6): 1099-1104. (in Chinese with English abstract)
doi: 10.13441/j.cnki.cykx.2012.06.028
10 黄传书,唐小平,雷霆.不同果桑品种对桑椹菌核病抗性差异的研究[J].蚕学通讯,2012,32(3):10-12. DOI:10.3969/j.issn.1006-0561.2012.03.003
HUANG C S, TANG X P, LEI T. Sclerotinia sclerotiorum susceptibility difference among fruit mulberry cultivars[J]. Newsletter of Sericultural Science, 2012, 32(3): 10-12. (in Chinese)
doi: 10.3969/j.issn.1006-0561.2012.03.003
11 郑章云,杨义,张明海,等.21个果桑品种资源对桑椹肥大性菌核病的田间抗病性评价[J].蚕业科学,2015,41(6):1011-1016. DOI:10.13441/j.cnki.cykx.2015.06.006
ZHENG Z Y, YANG Y, ZHANG M H, et al. Field resistance evaluation of 21 fruit mulberry germplasm resources against mulberry fruit hypertrophic sclerote disease[J]. Science of Sericulture, 2015, 41(6): 1011-1016. (in Chinese with English abstract)
doi: 10.13441/j.cnki.cykx.2015.06.006
12 范锦,胡兴明,于翠,等.桑椹菌核病防控技术研究进展[J].中国蚕业,2015,36(2):11-14. DOI:10.16839/j.cnki.zgcy.2015.02.003
FAN J, HU X M, YU C, et al. Research progress of mulberry sclerotinia control technology[J]. China Sericulture, 2015, 36(2): 11-14. (in Chinese)
doi: 10.16839/j.cnki.zgcy.2015.02.003
13 吕蕊花,金筱耘,赵爱春,等.果桑肥大性菌核病菌和油菜菌核病菌的交叉侵染、生物学特性及遗传关系[J].作物学报,2015,41(1):42-48. DOI:10.3724/SP.J.1006.2015.00042
LÜ R H, JIN X Y, ZHAO A C, et al. Cross infection, biological characteristics and genetic relationship between pathogens of hypertrophy sorosis sclerotenisis from mulberry and sclerotinia stem rot from oilseed rape[J]. Acta Agronomica Sinica, 2015, 41(1): 42-48. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00042
14 PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11: 789-799. DOI:10.1038/nrmicro3109
doi: 10.1038/nrmicro3109
15 KWAK M J, KONG H G, CHOI K, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11): 1100-1117. DOI:10.1038/nbt.4232
doi: 10.1038/nbt.4232
16 李坤峰,倪亮,杨平,等.果桑棚架栽培技术初探[J].中国蚕业,2019,40(4):14-16, 21. DOI:10.16839/j.cnki.zgcy.2019.04.003
LI K F, NI L, YANG P, et al. A preliminary study on the cultivation techniques of fruit mulberry in scaffolding[J]. China Sericulture, 2019, 40(4): 14-16, 21. (in Chinese)
doi: 10.16839/j.cnki.zgcy.2019.04.003
17 CAPORASO J G, LAUBER C L, WALTERS W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. PNAS, 2011, 108(): 4516-4522. DOI:10.1073/pnas.1000080107
doi: 10.1073/pnas.1000080107
18 BLAALID R, KUMAR S, NILSSON R H, et al. ITS1 versus ITS2 as DNA metabarcodes for fungi[J]. Molecular Ecology Resources, 2013, 13: 218-224. DOI:10.1111/1755-0998.12065
doi: 10.1111/1755-0998.12065
19 CHEN B, DU K, SUN C, et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives[J]. ISME Journal, 2018, 12(9): 2252-2262. DOI:10.1038/s41396-018-0174-1
doi: 10.1038/s41396-018-0174-1
20 HE J, ZHANG N, MUHAMMAD A, et al. From surviving to thriving, the assembly processes of microbial communities in stone biodeterioration: a case study of the West Lake UNESCO World Heritage area in China[J]. Science of the Total Environment, 2022, 805: 150395. DOI:10.1016/j.scitotenv.2021.150395
doi: 10.1016/j.scitotenv.2021.150395
21 张向前,杨文飞,徐云姬.中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述[J].生态环境学报,2019,28(12):2464-2472. DOI:10.16258/j.cnki.1674-5906.2019.12.020
ZHANG X Q, YANG W F, XU Y J. Effects of main tillage methods on soil structure, nutrients and micro-ecological environment of upland in China: a review [J]. Ecology and Environmental Sciences, 2019, 28(12): 2464-2472. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2019.12.020
22 GONZÁLEZ-CHÁVEZ M C A, AITKENHEAD-PETERSON J A, GENTRY T J, et al. Soil microbial community, C, N, and P responses to long-term tillage and crop rotation[J]. Soil and Tillage Research, 2010, 106(2): 285-293. DOI:10.1016/j.still.2009.11.008
doi: 10.1016/j.still.2009.11.008
23 隋跃宇,焦晓光,高崇生,等.土壤有机质含量与土壤微生物量及土壤酶活性关系的研究[J].土壤通报,2009,40(5):1036-1039.
SUI Y Y, JIAO X G, GAO C S, et al. The relationship among organic matter content and soil microbial biomass and soil enzyme activities[J]. Chinese Journal of Soil Science, 2009, 40(5): 1036-1039. (in Chinese with English abstract)
24 何金祥,付传明,黄宁珍,等.广西岩溶区烟草栽培地土壤养分、 ‍微生物与病害发生的调查分析[J].中国农学通报,2011,27(15):292-296.
HE J X, FU C M, HUANG N Z, et al. Survey and analysis on soil nutrient level, microorganism population and tobacco diseases infection in limestone area of Guangxi[J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 292-296. (in Chinese with English abstract)
25 高芬,闫欢,王梦亮,等.土壤微生物菌群变化对土传病害的影响及生物调控[J].中国农学通报,2020,36(13):160-164. DOI:10.11924/j.issn.1000-6850.casb19010085
GAO F, YAN H, WANG M L, et al. Soil microbial community changes: effects on soil-borne diseases and biological regulation[J]. Chinese Agricultural Science Bulletin, 2020, 36(13): 160-164. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb19010085
26 朱敏华,罗志芳,吴其龙,等.果桑菌核病的综合防治技术[J].现代园艺,2008(7):29-30. DOI:10.3969/j.issn.1006-4958.2008.07.019
ZHU M H, LUO Z F, WU Q L, et al. Comprehensive control technology of fruit mulberry sclerotinia[J]. Xiandai Horticulture, 2008(7): 29-30. (in Chinese)
doi: 10.3969/j.issn.1006-4958.2008.07.019
27 卢艳春,韦持章,周婧,等.广西西南地区果桑菌核病感病情况及综合防治措施[J].中国热带农业,2012(5):54-55. DOI:10.3969/j.issn.1673-0658.2012.05.016
LU Y C, WEI C Z, ZHOU J, et al. Sclerotinia sclerotiorum susceptibility and comprehensive control measures in southwestern Guangxi[J]. China Tropical Agriculture, 2012(5): 54-55. (in Chinese)
doi: 10.3969/j.issn.1673-0658.2012.05.016
28 吴国富,钟志成,蔡丹桂.桑椹菌核病综合防治与不同药剂组合防治效果试验[J].中国蚕业,2016,37(1):20-22. DOI:10.16839/j.cnki.zgcy.2016.01.005
WU G F, ZHONG Z C, CAI D G. Experiment on comprehensive control of mulberry sclerotinia and control effects of different chemical combinations[J]. China Sericulture, 2016, 37(1): 20-22. (in Chinese)
doi: 10.16839/j.cnki.zgcy.2016.01.005
29 FIERER N, LEFF J W, ADAMS B J, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes[J]. PNAS, 2012, 109(52): 21390-21395. DOI:10.1073/pnas.1215210110
doi: 10.1073/pnas.1215210110
[1] 温雪玮,陈泱泱,武斌,胡东维,梁五生. 以防治油菜菌核病为目标的核盘菌乙酰乳酸合酶抑制剂的筛选[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 589-598.
[2] 李阳1, 赵媛1, 徐幼平2, 王继鹏1, 蔡新忠1*. 草酸对植物体内Ca2+浓度及信号传导途径的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 141-145.
[3] 孙溶溶, 彭真, 程琳, 邵泰良, 卢钢. 花椰菜菌核病抗性鉴定方法比较及抗病种质资源筛选[J]. 浙江大学学报(农业与生命科学版), 2011, 37(6): 596-602.
[4] 高小宁,古丽皮艳,王美英,黄丽丽,涂璇,康振生. 产几丁质酶内生放线菌的筛选及其对核盘菌的抑制作用[J]. 浙江大学学报(农业与生命科学版), 2010, 36(6): 615-622.
[5] 吕英华 苏平 那宇等. 桑椹色素体外抗氧化能力研究[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 102-107.