Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (4): 504-516    DOI: 10.3785/j.issn.1008-9209.2021.02.082
资源利用与环境保护     
大气二氧化碳浓度升高对农田土壤硝化作用的影响(英文)
杜颐林,梁嘉斌,郭心雨,罗继鹏,刘苑坤,牟鲯璃,李廷强
1.浙江大学环境与资源学院, 污染环境修复与生态健康教育部重点实验室, 杭州 310058
2.浙江省农业资源与环境重点实验室, 杭州 310058
Effects of elevated atmospheric carbon dioxide concentration on nitrification of farmland soil
Yilin DU1(),Jiabin LIANG1,Xinyu GUO1,Jipeng LUO1,Yuankun LIU1,Qili MU1,Tingqiang LI1,2()
1.Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2.Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
 全文: PDF(1246 KB)   HTML
摘要:

高浓度二氧化碳(elevated carbon dioxide concentration, eCO2)对土壤氮循环的影响已被广泛报道,其中硝化作用在净初级生产力和温室气体排放中起着重要作用。然而,土壤硝化作用和氨氧化微生物对eCO2的响应规律并不确定。为了研究eCO2对农田生态系统中硝化作用的影响及其潜在的微生物学机制,我们进行了一项全球性的meta分析。结果表明,eCO2显著提高了农田土壤硝化潜势(potential nitrification rate, PNR)、氧化亚氮(N2O)排放量和氨氧化细菌(ammonia-oxidizing bacteria, AOB)丰度。气候、试验条件、土壤性质和田间管理是调控PNR对eCO2响应的重要因素。PNR的响应与AOB丰度呈显著正相关,而与氨氧化古菌(ammonia-oxidizing archaea, AOA)丰度无显著相关性;AOB丰度对eCO2响应与土壤硝化作用的关系比环境和试验因素以及管理措施的关系更密切。此外,土壤类型和CO2浓度升高幅度也决定着AOB丰度的响应。总之,在农田生态系统中,eCO2通过增加AOB数量来加速土壤硝化过程。

关键词: 农田土壤amoA基因高浓度二氧化碳meta分析硝化作用    
Abstract:

It has been widely reported that elevated carbon dioxide concentration (eCO2) affects soil nitrogen cycling dramatically, in which nitrification plays an important role in net primary productivity and greenhouse gas emission. However, the general patterns of soil nitrification and ammonia oxidizers in response to eCO2 remain uncertain. Here we performed a global meta-analysis to explore the effects of eCO2 on soil nitrification in agroecosystems and underlying microbial mechanisms. Our results showed that eCO2 significantly increased potential nitrification rate (PNR), nitrous oxide (N2O) emission and ammonia-oxidizing bacteria (AOB) abundance. Climates, experimental conditions, soil properties and agricultural practices were important factors in regulating the responses of soil nitrification to eCO2. The responses of nitrification potential were positively correlated with AOB abundance, while no evidence was found for ammonia-oxidizing archaea (AOA) abundance. The eCO2 response of AOB abundance was more closely related to the responses of soil nitrification than a wide range of environmental and experimental factors, as well as management practices. Furthermore, various effects of eCO2 on AOB abundance were determined by soil type and CO2 increase magnitude. Collectively, our results suggest that eCO2 strengthens soil nitrification by increasing AOB populations in agroecosystems.

Key words: farmland soil    amoA gene    elevated CO2 concentration    meta-analysis    nitrification
出版日期: 2022-08-25
CLC:  S 154  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜颐林
梁嘉斌
郭心雨
罗继鹏
刘苑坤
牟鲯璃
李廷强

引用本文:

杜颐林, 梁嘉斌, 郭心雨, 罗继鹏, 刘苑坤, 牟鲯璃, 李廷强. 大气二氧化碳浓度升高对农田土壤硝化作用的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 504-516.

Yilin DU, Jiabin LIANG, Xinyu GUO, Jipeng LUO, Yuankun LIU, Qili MU, Tingqiang LI. Effects of elevated atmospheric carbon dioxide concentration on nitrification of farmland soil. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 504-516.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.02.082        https://www.zjujournals.com/agr/CN/Y2022/V48/I4/504

  
  
  
  
  
  
  
  
1 ANDERSON I C, DRIGO B, KENIRY K, et al. Interactive effects of preindustrial, current and future atmospheric CO2 concentrations and temperature on soil fungi associated with two Eucalyptus species[J]. FEMS Microbiology Ecology, 2013, 83(2): 425-437. DOI:10.1111/1574-6941.12001
doi: 10.1111/1574-6941.12001
2 HĪGGĪNS J A, KURBATOV A V, SPAULDĪNG N E, et al. Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica[J]. PNAS, 2015, 112(22): 6887-6891. DOI:10.1073/pnas.1420232112
doi: 10.1073/pnas.1420232112
3 LONG S P, AĪNSWORTH E A, ROGERS A, et al. Rising atmospheric carbon dioxide: Plants face the future[J]. Annual Review of Plant Biology, 2004, 55: 591-628. DOI:10.1146/annurev.arplant.55.031903.141610
doi: 10.1146/annurev.arplant.55.031903.141610
4 CARDON Z G, HUNGATE B A, CAMBARDELLA C A, et al. Contrasting effects of elevated CO2 on old and new soil carbon pools[J]. Soil Biology and Biochemistry, 2001, 33(3): 365-373. DOI:10.1016/S0038-0717(00)00151-6
doi: 10.1016/S0038-0717(00)00151-6
5 HU S J, FIRESTONE M K, CHAPIN F S. Soil microbial feedbacks to atmospheric CO2 enrichment[J]. Trends in Ecology and Evolution, 1999, 14(11): 433-437. DOI:10.1016/s0169-5347(99)01682-1
doi: 10.1016/s0169-5347(99)01682-1
6 BEECKMAN F, MOTTE H, BEECKMAN T. Nitrification in agricultural soils: impact, actors and mitigation[J]. Current Opinion in Biotechnology, 2018, 50: 166-173. DOI:10.1016/j.copbio.2018.01.014
doi: 10.1016/j.copbio.2018.01.014
7 WIEDER W R, CLEVELAND C C, SMITH W K, et al. Future productivity and carbon storage limited by terrestrial nutrient availability[J]. Nature Geoscience, 2015, 8(6): 441-444. DOI:10.1038/NGEO2413
doi: 10.1038/NGEO2413
8 VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583): 555-559. DOI:10.1038/nature16459
doi: 10.1038/nature16459
9 DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509. DOI:10.1038/nature16461
doi: 10.1038/nature16461
10 LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104): 806-809. DOI:10.1038/nature04983
doi: 10.1038/nature04983
11 MÜELLER C, LAUGHLIN R J, CHRISTIE P, et al. Effects of repeated fertilizer and cattle slurry applications over 38 years on N dynamics in a temperate grassland soil[J]. Soil Biology and Biochemistry, 2011, 43(6): 1362-1371. DOI:10.1016/j.soilbio.2011.03.014
doi: 10.1016/j.soilbio.2011.03.014
12 ANDRESEN L C, MICHELSEN A, JONASSON S, et al. Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought[J]. Plant and Soil, 2010, 328(1/2): 381-396. DOI:10.1007/s11104-009-0118-7
doi: 10.1007/s11104-009-0118-7
13 CHENG Y, ZHANG J B, ZHU J G, et al. Ten years of elevated atmospheric CO2 doesn’t alter soil nitrogen availability in a rice paddy[J]. Soil Biology and Biochemistry, 2016, 98: 99-108. DOI:10.1016/j.soilbio.2016.04.003
doi: 10.1016/j.soilbio.2016.04.003
14 YANG S H, ZHENG Q S, YUAN M T, et al. Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials[J]. Science of the Total Environment, 2019, 652: 1474-1481. DOI:10.1016/j.scitotenv.2018.10.353
doi: 10.1016/j.scitotenv.2018.10.353
15 BUTTERLY C R, PHILLIPS L A, WILTSHIRE J L, et al. Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils[J]. Soil Biology and Biochemistry, 2016, 97: 157-167. DOI:10.1016/j.soilbio.2016.03.010
doi: 10.1016/j.soilbio.2016.03.010
16 CANTAREL A A M, BLOOR J M G, POMMIER T, et al. Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem[J]. Global Change Biology, 2012, 18(8): 2520-2531. DOI:10.1111/j.1365-2486.2012.02692.x
doi: 10.1111/j.1365-2486.2012.02692.x
17 NIBOYET A, LE ROUX X, DIJKSTRA P, et al. Testing interactive effects of global environmental changes on soil nitrogen cycling[J]. Ecosphere, 2011, 2(5): art56. DOI:10.1890/ES10-00148.1
doi: 10.1890/ES10-00148.1
18 DONG J L, GRUDA N, LI X, et al. Impacts of elevated CO2 on nitrogen uptake of cucumber plants and nitrogen cycling in a greenhouse soil[J]. Applied Soil Ecology, 2020, 145: 103342. DOI:10.1016/j.apsoil.2019.08.004
doi: 10.1016/j.apsoil.2019.08.004
19 KANERVA T, PALOJÄRVI A, RÄMÖ K, et al. A 3-year exposure to CO2 and O3 induced minor changes in soil N cycling in a meadow ecosystem[J]. Plant and Soil, 2006, 286(1/2): 61-73. DOI:10.1007/s11104-006-9026-2
doi: 10.1007/s11104-006-9026-2
20 NELSON D M, CANN I K O, MACKIE R I. Response of archaeal communities in the rhizosphere of maize and soybean to elevated atmospheric CO2 concentrations[J]. PLoS ONE, 2010, 5(12): e15897. DOI:10.1371/journal.pone.0015897
doi: 10.1371/journal.pone.0015897
21 ZHANG C J, SHEN J P, SUN Y F, et al. Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe[J]. FEMS Microbiology Ecology, 2017, 93(4): fix037. DOI:10.1093/femsec/fix037
doi: 10.1093/femsec/fix037
22 韩琳,王殳屹,史奕,等.FACE环境下不同秸秆与氮肥管理对稻田土壤硝化和反硝化菌的影响[J].土壤,2006,38(6):762-767. DOI:10.13758/j.cnki.tr.2006.06.017
HAN L, WANG S Y, SHI Y, et al. Effect of different levels of straw-returning-back-to-field and N fertilization on nitrifiers and denitrifiers of paddy soils in FACE (free-air carbon dioxide enrichment)[J]. Soils, 2006, 38(6): 762-767. (in Chinese with English abstract). DOI:10.13758/j.cnki.tr.2006.06.017
doi: 10.13758/j.cnki.tr.2006.06.017
23 BARNARD R, LEADLEY P W, HUNGATE B A. Global change, nitrification, and denitrification: a review[J]. Global Biogeochemical Cycles, 2005, 19(1): GB1007. DOI:10.1029/2004GB002282
doi: 10.1029/2004GB002282
24 RÜTTING T, ANDRESEN L C. Nitrogen cycle responses to elevated CO2 depend on ecosystem nutrient status[J]. Nutrient Cycling in Agroecosystems, 2015, 101(3): 285-294. DOI:10.1007/s10705-015-9683-8
doi: 10.1007/s10705-015-9683-8
25 KOTTEK M, GRIESER J, BECK C, et al. World Map of the Köppen-Geiger climate classification updated[J]. Meteoro-logische Zeitschrift, 2006, 15(3): 259-263. DOI:‍10.1127/0941-2948/2006/0130
doi: ?10.1127/0941-2948/2006/0130
26 VIECHTBAUER W. Conducting meta-analyses in R with the metafor package[J]. Journal of Statistical Software, 2010, 36(3): 1-48. DOI:10.18637/jss.v036.i03
doi: 10.18637/jss.v036.i03
27 CALCAGNO V, DE MAZANCOURT C. glmulti: an R package for easy automated model selection with (generalized) linear models[J]. Journal of Statistical Software, 2010, 34(12): 1-29. DOI:10.18637/jss.v034.i12
doi: 10.18637/jss.v034.i12
28 TERRER C, VICCA S, HUNGATE B A, et al. Mycorrhizal association as a primary control of the CO2 fertilization effect[J]. Science, 2016, 353(6294): 72-74. DOI:‍10.1126/science.aaf4610
doi: ?10.1126/science.aaf4610
29 BAI E, LI S L, XU W H, et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics[J]. New Phytologist, 2013, 199(2): 441-451. DOI:10.1111/nph.12252
doi: 10.1111/nph.12252
30 ZHANG Y, ZHANG N, YIN J J, et al. Simulated warming enhances the responses of microbial N transformations to reactive N input in a Tibetan alpine meadow[J]. Environment International, 2020, 141: 105795. DOI:10.1016/j.envint.2020.105795
doi: 10.1016/j.envint.2020.105795
31 DAI Z M, YU M J, CHEN H H, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5267-5276. DOI:10.1111/gcb.15211
doi: 10.1111/gcb.15211
32 CHEN Y L, XU Z W, HU H W, et al. Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia[J]. Applied Soil Ecology, 2013, 68: 36-45. DOI:10.1016/j.apsoil.2013.03.006
doi: 10.1016/j.apsoil.2013.03.006
33 PLACELLA S A, BRODIE E L, FIRESTONE M K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups[J]. PNAS, 2012, 109(27): 10931-10936. DOI:10.1073/pnas.1204306109
doi: 10.1073/pnas.1204306109
34 ZHONG L, DU R, DING K, et al. Effects of grazing on N2O production potential and abundance of nitrifying and denitrifying microbial communities in meadow-steppe grassland in northern China[J]. Soil Biology and Biochemistry, 2014, 69: 1-10. DOI:10.1016/j.soilbio.2013.10.028
doi: 10.1016/j.soilbio.2013.10.028
35 ZHANG N L, WAN S Q, GUO J X, et al. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands[J]. Soil Biology and Biochemistry, 2015, 89: 12-23. DOI:10.1016/j.soilbio.2015.06.022
doi: 10.1016/j.soilbio.2015.06.022
36 LIANG J Y, QI X, SOUZA L, et al. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis[J]. Biogeosciences, 2016, 13(9): 2689-2699. DOI:10.5194/bg-13-2689-2016
doi: 10.5194/bg-13-2689-2016
37 REICH P B, HOBBIE S E, LEE T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2 [J]. Nature, 2006, 440(7086): 922-925. DOI:10.1038/nature04486
doi: 10.1038/nature04486
38 SKIBA U, BALL B. The effect of soil texture and soil drainage on emissions of nitric oxide and nitrous oxide[J]. Soil Use and Management, 2002, 18(1): 56-60. DOI:10.1079/SUM2001101
doi: 10.1079/SUM2001101
39 XIA F, MEI K, XU Y, et al. Response of N2O emission to manure application in field trials of agricultural soils across the globe[J]. Science of the Total Environment, 2020, 733: 139390. DOI:10.1016/j.scitotenv.2020.139390
doi: 10.1016/j.scitotenv.2020.139390
40 CHEN H H, LI X C, HU F, et al. Soil nitrous oxide emissions following crop residue addition: a meta-analysis[J]. Global Change Biology, 2013, 19(10): 2956-2964. DOI:10.1111/gcb.12274
doi: 10.1111/gcb.12274
41 JIN V L, EVANS R D. Elevated CO2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils[J]. Global Change Biology, 2007, 13(2): 452-465. DOI:10.1111/j.1365-2486.2006.01308.x
doi: 10.1111/j.1365-2486.2006.01308.x
42 REGAN K, KAMMANN C, HARTUNG K, et al. Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2 [J]. Global Change Biology, 2011, 17(10): 3176-3186. DOI:10.1111/j.1365-2486.2011.02470.x
doi: 10.1111/j.1365-2486.2011.02470.x
43 LI Z L, ZENG Z Q, TIAN D S, et al. Global patterns and controlling factors of soil nitrification rate[J]. Global Change Biology, 2020, 26(7): 4147-4157. DOI:10.1111/gcb.15119
doi: 10.1111/gcb.15119
44 McDANIEL M D, TIEMANN L K, GRANDY A S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis[J]. Ecological Applications, 2014, 24(3): 560-570. DOI:10.1890/13-0616.1
doi: 10.1890/13-0616.1
45 OUYANG Y, EVANS S E, FRIESEN M L, et al. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies[J]. Soil Biology and Biochemistry, 2018, 127: 71-78. DOI:10.1016/j.soilbio.2018.08.024
doi: 10.1016/j.soilbio.2018.08.024
46 STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology and Biochemistry, 2009, 41(6): 1301-1310. DOI:10.1016/j.soilbio.2009.03.016
doi: 10.1016/j.soilbio.2009.03.016
47 KARAS P A, BAGUELIN C, PERTILE G, et al. Assessment of the impact of three pesticides on microbial dynamics and functions in a lab-to-field experimental approach[J]. Science of the Total Environment, 2018, 637/638: 636-646. DOI:10.1016/j.scitotenv.2018.05.073
doi: 10.1016/j.scitotenv.2018.05.073
48 MUÑOZ-LEOZ B, RUIZ-ROMERA E, ANTIGÜEEDAD I, et al. Tebuconazole application decreases soil microbial biomass and activity[J]. Soil Biology and Biochemistry, 2011, 43(10): 2176-2183. DOI:10.1016/j.soilbio.2011.07.001
doi: 10.1016/j.soilbio.2011.07.001
49 CAREY C J, DOVE N C, BEMAN J M, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea[J]. Soil Biology and Biochemistry, 2016, 99: 158-166. DOI:10.1016/j.soilbio.2016.05.014
doi: 10.1016/j.soilbio.2016.05.014
50 BERNHARD A E, LANDRY Z C, BLEVINS A, et al. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates[J]. Applied and Environmental Microbiology, 2010, 76(4): 1285-1289. DOI:10.1128/AEM.02018-09
doi: 10.1128/AEM.02018-09
51 PROSSER J I, NICOL G W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation[J]. Trends in Microbiology, 2012, 20(11): 523-531. DOI:10.1016/j.tim.2012.08.001
doi: 10.1016/j.tim.2012.08.001
52 MARTENS-HABBENA W, BERUBE P M, URAKAWA H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J]. Nature, 2009, 461(7266): 976-979. DOI:10.1038/nature08465
doi: 10.1038/nature08465
53 OUYANG Y, NORTON J M, STARK J M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil[J]. Soil Biology and Biochemistry, 2017, 113: 161-172. DOI:10.1016/j.soilbio.2017.06.010
doi: 10.1016/j.soilbio.2017.06.010
54 MOSIER A R, DUXBURY J M, FRENEY J R, et al. Assessing and mitigating N2O emissions from agricultural soils[J]. Climatic Change, 1998, 40(1): 7-38. DOI:10.1023/a:1005386614431
doi: 10.1023/a:1005386614431
55 OSWALD R, BEHRENDT T, ERMEL M, et al. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen[J]. Science, 2013, 341(6151): 1233-1235. DOI:10.1126/science.1242266
doi: 10.1126/science.1242266
[1] 邓美华,朱有为,段丽丽,沈菁,冯英. 农田土壤重金属污染“边生产边修复”综合防治技术模式解析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 135-150.
[2] 孟龙,黄涂海,陈謇,钟福林,施加春,徐建明. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 263-271.
[3] 郑平  Pieme Constant Anatole  杜泽俊  胡宝兰  任蔚彬. 气提式内循环生物反应器处理高浓度含氨废水的研究[J]. 浙江大学学报(农业与生命科学版), 2001, 27(1): 23-27.