Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (3): 289-302    DOI: 10.3785/j.issn.1008-9209.2021.04.281
综述     
土壤水分微波遥感反演算法及应用研究进展
邓小东1,2(),王宏全1,3()
1.浙江大学环境与资源学院农业遥感与信息技术应用研究所,杭州 310058
2.贵州大学矿业学院,贵阳 550025
3.浙江省农业遥感与信息技术重点研究实验室,杭州 310058
Recent advances on algorithms and applications of soil moisture retrieval from microwave remote sensing
Xiaodong DENG1,2(),Hongquan WANG1,3()
1.Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2.Mining College, Guizhou University, Guiyang 550025, China
3.Key Laboratory of Agriculture Remote Sensing and Information System of Zhejiang Province, Hangzhou 310058, China
 全文: PDF(1944 KB)   HTML
摘要:

土壤水分是农作物物候期生长和气候、环境变化的敏感因子,在陆表水气循环过程中发挥着重要作用。本文首先梳理了基于主动微波遥感、被动微波遥感、全球卫星导航系统反射测量(Global Navigation Satellite System Reflectometry, GNSS-R)技术的土壤水分反演算法:1)基于主动微波遥感的裸露地表经验模型、半经验模型、物理散射模型、植被覆盖的水云模型(water cloud model, WCM)和密歇根微波植被散射(Michigan microwave canopy scattering, MIMICS)模型;2)基于被动微波遥感的裸露地表粗糙度模型Q/HHpQp 和植被覆盖的τ-ω模型;3)地基、星载GNSS-R土壤水分反演算法。其次,分析了近几十年来微波遥感反演土壤水分的研究进展,提出了进一步精确量化植被和地表粗糙度等土壤水分反演要素的时空变异性是提高反演精度的关键,尤其要考虑植被生长过程及由此导致的电磁波辐射传输机制的不确定性问题。最后,展望了土壤水分在农业生产、陆表水气循环中的应用前景,并指出全球尺度土壤水分对气候变化的响应及反馈机制将是未来的研究热点。

关键词: 土壤水分微波遥感反演算法    
Abstract:

Soil moisture is a sensitive factor for crop phenological growth, climate and environment changes, and it plays an important role in the land surface water and atmospheric circulation. In this paper, the soil moisture retrieval algorithms based on active microwave remote sensing, passive microwave remote sensing and Global Navigation Satellite System Reflectometry (GNSS-R) technology were firstly sorted, including: 1) active microwave remote sensing-based empirical model, semiempirical model, physical scattering model for bare ground surface, and water cloud model (WCM), Michigan microwave canopy scattering (MIMICS) model for vegetation coverage; 2) passive microwave remote sensing-based Q/H, Hp, Qp roughness models for bare ground surface and τ-ω model for vegetation coverage; 3) spaceborne and ground-based GNSS-R soil moisture retrieval algorithms. Secondly, the research and development of soil moisture retrieval from microwave remote sensing in recent decades were reviewed. It was proposed that the key to improve the accuracy of soil moisture retrieval was to quantify accurately the spatial and temporal variability of soil moisture retrieval factors such as vegetation and surface roughness, especially the uncertainty of vegetation growth process and the resulting electromagnetic wave radiation transmission mechanism. Finally, the application outlook of soil moisture in agricultural production and land-surface moisture circulation was prospected, and it was pointed out that the response and feedback mechanism of soil moisture on global scale to climate change would be a research hotspot in the future.

Key words: soil moisture    microwave remote sensing    retrieval algorithms
收稿日期: 2021-04-28 出版日期: 2022-07-07
CLC:  TP 79  
基金资助: 国家自然科学基金面上科学基金项目(32171781);国家自然科学基金青年科学基金项目(41801232);中央高校基本科研业务费青年教师专项资金(2018QNA6011)
通讯作者: 王宏全     E-mail: xddeng@zju.edu.cn;Hongquan_Wang@zju.edu.cn
作者简介: 邓小东(https://orcid.org/0000-0003-3038-5047),E-mail:xddeng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓小东
王宏全

引用本文:

邓小东,王宏全. 土壤水分微波遥感反演算法及应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 289-302.

Xiaodong DENG,Hongquan WANG. Recent advances on algorithms and applications of soil moisture retrieval from microwave remote sensing. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 289-302.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.04.281        https://www.zjujournals.com/agr/CN/Y2022/V48/I3/289

反演技术 Retrieval technology

属性

Property

主要特点

Main characteristics

常用方法/模型 Common method/model

文献

Reference

主动微波遥感 Active microwave

remote sensing

裸土区后向散射

介电特性

Backscattering dielectric

properties of bare soil region

空间分辨率较高

High spatial resolution

受地表粗糙度的影响较大

Greatly affected by

surface roughness

Oh[7]
Dubois[8]
Shi[9]
IEM AIEM[10-11][12]

植被表面后向散射

介电特性

Backscattering dielectric

properties of vegetation

surface

受植被覆盖度的影响较大

Greatly affected by vegetation

coverage degree

WCM[13]
MIMICS[14]

被动微波遥感 Passive microwave

remote sensing

亮温度介电特性

Dielectric properties of

brightness temperature

重访周期短

Short revisit interval

空间分辨率较低,受植被覆盖度和地表粗糙度的影响

Low spatial resolution, and

affected by vegetation coverage degree and surface roughness

SCA

?L-MEB

JAXA

LPRM

[15]

[16]

[17]

[18]

单天线地基GNSS-R

Single antenna

ground-based GNSS-R

多路径效应

Multipath effect

技术成本较低

Low technology cost

反演面积较小

Small retrieval area

干涉测量方程

Interferometric

equation

[19]

多天线地基GNSS-R

Multiple antenna

ground-based GNSS-R

机载GNSS-R

Airborne GNSS-R

多普勒频移和时延

Doppler shift and delay

技术成本较高

High technology cost

监测面积可达1 000 m2

The monitoring area is over

1 000 m2

反射率法

Reflectivity

method

[20]
星载GNSS-R Spaceborne GNSS-R

信号源稳定,时间

分辨率高

Stable signal source and high time resolution

监测面积覆盖泛亚热带

The monitoring area covers

the pan-subtropics

双基雷达方程

Bistatic radar equation

[21]
表1  土壤水分微波遥感反演技术对比

主动微波遥感地表散射模型

Active microwave remote sensing surface scattering model

适用范围

Application range

文献

Reference

半经验模型

Semiempirical model

Oh10°θ70°,0.13ks6.98,0.04Mv0.291[7]
Duboisθ30°,ks2.5,Mv35%,1.5?GHzfb11?GHz[8]
Shi25°θ70°,0.2ks3.6,2.5kl35,2%Mv50%[9]

物理散射模型

Physical scattering model

GOM(2kscosθ)210,kl6,l22.76?sλ[11]
POMkl6,sl0.25[11]
SPMks0.3,kl3,sl0.30[11]
IEMks3,sl0.30[10-11]
表2  主动微波遥感地表散射模型的适用范围
图1  水云模型散射示意图1:植被层的直接后向散射;2:经过植被层双程衰减之后的剩余散射。
图2  MIMICS模型散射示意图1~5分别对应σpq10~σpq50。
图3  τ-ω模型辐射示意图
图4  土壤水分GNSS-R反演技术A.地基单天线;B.地基多天线;C.机载;D.星载。

参量

Parameter

AMSR-E/2SMOSSMAPESA CCIFY-3BASCATCYGNSS
波段类型 Band type

多波段

Multiband

(6.93~

89.00 GHz)

L波段

L band

(1.4 GHz)

L波段

L band

(1.26~

1.41 GHz)

多源主被动数据

Multi-source

active-passive

data

多波段

Multiband

(10.65~

89.00 GHz)

C波段

C band

(5.255 GHz)

L波段

L band

(1.5 GHz)

被动微波

Passive

microwave

被动微波

Passive

microwave

主被动微波

Active-passive

microwave

主被动微波

Active-passive

microwave

被动微波

Passive

microwave

主动微波

Active

microwave

主动微波

Active

microwave

空间分辨率

Spatial resolution/km

25253~36252512.5/25.0/50.036

时间分辨率

Temporal

resolution/d

11~31~311~31~21

反演方法

Retrieval method

LPRM, JAXAL-MEBSCA/DCA

组合法

Combination

method

TU-WEN

反射率法

Reflectivity

method

时间序列

Time series

2002—2011年/

2012年至今

2002—2011/

since 2012

2010年至今

Since 2010

2015年至今

Since 2015

1979年至今

Since 1979

2011年至今

Since 2011

2007年至今

Since 2007

2017年至今

Since 2007

表3  全球主要微波遥感土壤水分产品特征
1 LIU L, GUDMUNDSSON L, HAUSER M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communications, 2020,11(1): 1-9. DOI:10.1038/s41467-020-18631-1
doi: 10.1038/s41467-020-18631-1
2 PENG J, ALBERGEL C, BALENZANO A, et al. A roadmap for high-resolution satellite soil moisture applications confronting product characteristics with user requirements[J]. Remote Sensing of Environment, 2020, 252: 1-15. DOI:10.1016/j.rse.2020.112162
doi: 10.1016/j.rse.2020.112162
3 BABAEIAN E, SADEGHI M, JONES S B, et al. Ground, proximal, and satellite remote sensing of soil moisture[J]. Reviews of Geophysics, 2019, 57(2): 530-616. DOI:10.1029/2018RG000618
doi: 10.1029/2018RG000618
4 LIU Y Y, DORIGO W A, PARINUSSA R M, et al. Trend-preserving blending of passive and active microwave soil moisture retrievals[J]. Remote Sensing of Environment, 2012,123: 280-297. DOI:10.1016/j.rse.2012.03.014
doi: 10.1016/j.rse.2012.03.014
5 李占杰,陈基培,刘艳民,等.土壤水分遥感反演研究进展[J].北京师范大学学报(自然科学版),2020,56(3):474-481. DOI:10.12202/j.0476-0301.2020231
LI Z J, CHEN J P, LIU Y M, et al. Soil moisture retrieval from remote sensing[J]. Journal of Beijing Normal University (Natural Science), 2020,56(3):474-481. (in Chinese with English abstract)
doi: 10.12202/j.0476-0301.2020231
6 武胜利.基于TRMM的主被动微波遥感结合反演土壤水分算法研究[D].北京:中国科学院研究生院(遥感应用研究所),2006.
WU S L. Study on combined active/passive microwave remote sensing approach for soil moisture retrieval with TRMM data[D]. Beijing: Graduate School of Chinese Academy of Sciences (Institute of Remote Sensing of Applications), 2006. (in Chinese with English abstract)
7 OH Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 596-601. DOI:10.1109/TGRS.2003.821065
doi: 10.1109/TGRS.2003.821065
8 DUBOIS P C, VAN ZYL J, ENGMAN T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 915-926. DOI:10.1109/36.406677
doi: 10.1109/36.406677
9 SHI J C, WANG J, HSU A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1254-1266. DOI:10.1109/36.628792
doi: 10.1109/36.628792
10 FUNG A K, LI Z Q, CHEN K S. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 356-369. DOI:10.1109/36.134085
doi: 10.1109/36.134085
11 FUNG A K. Microwave Scattering and Emission Models and their Applications[M]. Norwell, U. S. : Artech House, 1994.
12 CHEN K S, WU T D, TSANG L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 90-101. DOI:10.1109/TGRS.2002.807587
doi: 10.1109/TGRS.2002.807587
13 ATTEMA E P, ULABY F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978,13(2): 357-364. DOI:10.1029/rs013i002p00357
doi: 10.1029/rs013i002p00357
14 ULABY F T, SARABANDI K, MCDONALD K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990,11(7): 1223-1253. DOI:10.1080/01431169008955090
doi: 10.1080/01431169008955090
15 JACKSON T J. Ⅲ. Measuring surface soil moisture using passive microwave remote sensing[J]. Hydrological Processes, 1993, 7(2): 139-152. DOI:10.1002/hyp.3360070205
doi: 10.1002/hyp.3360070205
16 NJOKU E G, JACKSON T J, LAKSHMI V, et al. Soil moisture retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 215-229. DOI:10.1109/TGRS.2002.808243
doi: 10.1109/TGRS.2002.808243
17 KOIKE T, NAKAMURA Y, KAIHOTSU I, et al. Development of an advanced microwave scanning radiometer (AMSR-E) algorithm for soil moisture and vegetation water content[J]. Proceedings of Hydraulic Engineering, 2004,48: 217-222. DOI:10.2208/prohe.48.217
doi: 10.2208/prohe.48.217
18 OWE M, DE JEU R, HOLMES T. Multisensor historical climatology of satellite-derived global land surface moisture[J]. Journal of Geophysical Research, 2008,113: F01002. DOI:10.1029/2007JF000769
doi: 10.1029/2007JF000769
19 LARSON K M, SMALL E E, GUTMANN E, et al. Using GPS multipath to measure soil moisture fluctuations: initial results[J]. GPS Solutions, 2008,12: 173-177. DOI:10.1007/s10291-007-0076-6
doi: 10.1007/s10291-007-0076-6
20 王迎强,严卫,符养,等.机载GPS反射信号土壤水分测量技术[J].遥感学报,2009,13(4):678-685.
WANG Y Q, YAN W, FU Y, et al. Airborne GPS reflection signal soil moisture measurement technology[J]. Journal of Remote Sensing, 2009, 13(4): 678-685. (in Chinese with English abstract)
21 ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964. DOI:10.1109/36.841977
doi: 10.1109/36.841977
22 ULABY F T, MOORE M K, FUNG A K. Microwave Remote Sensing Volume Ⅱ: Radar Remote Sensing and Surface Scattering and Emission Theory[M]. Norwell, U. S.: Artech House, 1986.
23 ENGMAN E T, CHAUHAN N. Status of microwave soil moisture measurements with remote sensing[J]. Remote Sensing of Environment, 1995, 51(1): 189-198. DOI:10.1016/0034-4257(94)00074-W
doi: 10.1016/0034-4257(94)00074-W
24 WANG J R, CHOUDHURY B J. Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency[J]. Journal of Geophysical Research, 1981,86(C6): 5277-5282. DOI:10.1029/jc086ic06p05277
doi: 10.1029/jc086ic06p05277
25 CHOUDHURY B J, SCHMUGGE T J, CHANG A, et al. Effect of surface roughness on the microwave emission from soils[J]. Journal of Geophysical Research, 1979,84(C9):5699-5706. DOI:10.1029/jc084ic09p05699
doi: 10.1029/jc084ic09p05699
26 SHI J C, JIANG L M, ZHANG L X, et al. A parameterized multifrequency-polarization surface emission model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(12): 2831-2841. DOI:10.1109/TGRS.2005.857902
doi: 10.1109/TGRS.2005.857902
27 MO T, CHOUDHURY B J, SCHMUGGE T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research, 1982,87(C13):11229-11237. DOI:10.1029/jc087ic13p11229
doi: 10.1029/jc087ic13p11229
28 KERR Y H, NJOKU E G. A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3): 384-393. DOI:10.1109/36.54364
doi: 10.1109/36.54364
29 MARTÍN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA Journal, 1993, 17: 331-355.
30 万玮,李黄,洪阳,等.GNSS-R遥感观测模式及陆面应用[J].遥感学报,2015,19(6):882-893. DOI:10.11834/jrs.20154304
WAN W, LI H, HONG Y, et al. Definition and application of GNSS-R observation patterns[J]. Journal of Remote Sensing, 2015, 19(6): 882-893. (in Chinese with English abstract)
doi: 10.11834/jrs.20154304
31 ULABY F T, ASLAM A, DOBSON M C. Effects of vegetation cover on the radar sensitivity to soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982,20(4): 476-481. DOI:10.1109/tgrs.1982.350413
doi: 10.1109/tgrs.1982.350413
32 BAGHDADI N, HOLAH N, ZRIBI M. Soil moisture estimation using multi-incidence and multiploidization ASAR data[J]. International Journal of Remote Sensing, 2006, 27(10): 1907-1920. DOI:10.1080/01431160500239032
doi: 10.1080/01431160500239032
33 ZRIBI M, BAGHDADI N, GUERIN C. Analysis of surface roughness heterogeneity and scattering behavior for radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2438-2444. DOI:10.1109/TGRS.2006.873742
doi: 10.1109/TGRS.2006.873742
34 XING M, HE B, NI X, et al. Retrieving surface soil moisture over wheat and soybean fields during growing season using modified water cloud model from Radarsat-2 SAR data[J]. Remote Sensing, 2019, 11(16): 1956. DOI:10.3390/rs11161956
doi: 10.3390/rs11161956
35 YANG J, LI Y, SHI J C, et al. Modification of the extended advanced IEM for scattering from randomly rough surfaces[J]. IEEE Geoscience and Remote Sensing Letters, 2021,18(2): 236-240. DOI:10.1109/LGRS.2020.2971532
doi: 10.1109/LGRS.2020.2971532
36 WEIß T, RAMSAUER T, LÖW A, et al. Evaluation of different radiative transfer models for microwave backscatter estimation of wheat fields[J]. Remote Sensing, 2021,12: 3037. DOI:10.3390/rs12183037
doi: 10.3390/rs12183037
37 WAGNER W, LEMOINE G, ROTT H. A method for estimating soil moisture from ERS scatterometer and soil data[J]. Remote Sensing of Environment, 1999, 70: 191-207. DOI:10.1016/S0034-4257(99)00036-X
doi: 10.1016/S0034-4257(99)00036-X
38 PANCIERA R, WALKER J P, JACKSON T J, et al. The soil moisture active passive experiments (SMAPex): towards soil moisture retrieval from the SMAP mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(1): 490-507. DOI:10.1109/TGRS.2013.2241774
doi: 10.1109/TGRS.2013.2241774
39 KERR Y H, WALDTEUFEL P, RICHAUME P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1384-1403. DOI:10.1109/TGRS.2012.2184548
doi: 10.1109/TGRS.2012.2184548
40 GAO L, EBTEHAJ A M, CHAUBELL J, et al. Reappraisal of SMAP inversion algorithms for soil moisture and vegetation optical depth[J]. Remote Sensing of Environment, 2021, 264:112627. DOI:10.1016/j.rse.2021.112627
doi: 10.1016/j.rse.2021.112627
41 徐晓悦,郑南山,谭兴龙.GPS-R技术辅助的土壤水含量变化监测[J].测绘科学技术学报,2015,32(5):465-468. DOI: 10.3969/j.issn.1673-6338.2015.05.006
XU X Y, ZHENG N S, TAN X L. Monitoring of soil moisture fluctuation in mining areas based on GPS-R[J]. Journal of Geomatics Science and Technology, 2015, 32(5): 465-468. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-6338.2015.05.006
42 YANG T, WAN W, CHEN X W, et al. Land surface characterization using BeiDou signal-to-noise ratio observations[J]. GPS Solutions, 2019, 23: 32. DOI:10.1007/s10291-019-0824-4
doi: 10.1007/s10291-019-0824-4
43 严颂华,龚健雅,张训械,等.GNSS-R测量地表土壤湿度的地基实验[J].地球物理学报,2011,54(11):2735-2744. DOI: 10.3969/j.issn.0001-5733.2011.11.003
YAN S H, GONG J Y, ZHANG X X, et al. Ground based GNSS-R observations for soil moisture[J]. Chinese Journal of Geophysics, 2011, 54(11): 2735-2744. (in Chinese with English abstract)
doi: 10.3969/j.issn.0001-5733.2011.11.003
44 ZENG J Y, CHEN K S, BI H, et al. Radar response of off-specular bistatic scattering to soil moisture and surface roughness at L-band[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1945-1949. DOI:10.1109/LGRS.2016.2618884
doi: 10.1109/LGRS.2016.2618884
45 LIU Y, CHEN K S, LIU Y, et al. On angular features of radar bistatic scattering from rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3223-3235. DOI:10.1109/TGRS.2017.2665561
doi: 10.1109/TGRS.2017.2665561
46 ZENG J Y, CHEN K S. Theoretical study of global sensitivity analysis of L-band radar bistatic scattering for soil moisture retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1710-1714. DOI:10.1109/ LGRS.2018.2858269
doi: 10.1109/ LGRS.2018.2858269
47 BROGIONI M, PETTINATO S, MACELLONI G, et al. Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils[J]. International Journal of Remote Sensing, 2010, 31(15): 4227-4255. DOI:10.1080/01431160903232808
doi: 10.1080/01431160903232808
48 MASTERS D, AXELRAD P, KATZBERG S. Initial results of land-reflected GPS bistatic radar measurements in SMEX02[J]. Remote Sensing of Environment, 2004,92(4):507-520. DOI:10.1016/j.rse.2004.05.016
doi: 10.1016/j.rse.2004.05.016
49 CHEW C C, SHAH R, ZUFFADA C, et al. Demonstrating soil moisture remote sensing with observations from the UK Techdemosat-1 satellite mission[J]. Geophysical Research Letters, 2016, 43(7): 3317-3324. DOI:10.1002/2016GL068189
doi: 10.1002/2016GL068189
50 CHEW C C, SMALL E E. Soil moisture sensing using spaceborne GNSS reflections: comparison of CYGN-SS reflectivity to SMAP soil moisture[J]. Geophysical Research Letters, 2018, 45(9): 4049-4057. DOI:10.1029/2018GL077905
doi: 10.1029/2018GL077905
51 YAN Q Y, HUANG W M, JIN S G, et al. Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data[J]. Remote Sensing of Environment, 2020, 247: 1-10. DOI:10.1016 /j.rse.2020.111944
doi: 10.1016 /j.rse.2020.111944
52 CHEW C C, SMALL E E. Description of the UCAR/CU soil moisture product[J]. Remote Sensing, 2020, 12(10): 1558. DOI: 10.3390/rs12101558
doi: 10.3390/rs12101558
53 YAO P P, LU H, SHI J C, et al. A long term global daily soil moisture dataset derived from AMSR-E and AMSR2 (2002—2019)[J]. Scientific Data, 2021, 8: 143. DOI:10.1038/s41597-021-00925-8
doi: 10.1038/s41597-021-00925-8
54 YUAN Q Q, SHEN H F, ZHANG L P, et al. Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S.[J]. Journal of Hydrology, 2020, 580: 1-17. DOI:10.1016/j.jhydrol.2019.124351
doi: 10.1016/j.jhydrol.2019.124351
55 CHEN Y Z, FENG X M, FU B J. A new dataset of satellite observation-based global surface soil moisture covering 2003—2018[J]. Earth Science Data, 2020,13(1): 1-46. DOI:10.5194/essd-2020-59
doi: 10.5194/essd-2020-59
56 ZENG J Y, CHEN K S, BI H Y. A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4929-4940. DOI:10.1109/TGRS.2016.2553085
doi: 10.1109/TGRS.2016.2553085
57 MA H L, ZENG J Y, CHEN N C, et al. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: a comprehensive assessment using global ground-based observations[J]. Remote Sensing of Environment, 2019, 23:111215. DOI:10.1016/j.rse.2019.111215
doi: 10.1016/j.rse.2019.111215
58 ZHU L Y, WANG H Q, TONG C, et al. Evaluation of ESA active, passive and combined soil moisture products using upscaled ground measurements[J]. Sensors, 2019, 19: 2718. DOI:10.3390/s19122718
doi: 10.3390/s19122718
59 雷芳妮.微波遥感土壤湿度误差估计与水文数据同化[D].武汉:武汉大学,2016.
LEI F N. Assessment of satellite-based microwave soil moisture and hydrological data assimilation[D]. Wuhan: Wuhan University, 2016. (in Chinese with English abstract)
60 师春香.基于EnKF 算法的卫星遥感土壤湿度同化研究[D].北京:中国科学院研究生院,2008.
SHI C X. A land data assimilation method of soil moisture retrieved from remote sensing data based on the EnKF[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2008. (in Chinese with English abstract)
61 WANG H Q, MAGAGI R, GOITA K, et al. Crop phenology retrieval via polarimetric SAR decomposition and random forest algorithm[J]. Remote Sensing of Environment,2019,231: 111234. DOI:10.1016/j.rse.2019.111234
doi: 10.1016/j.rse.2019.111234
62 吴学睿,李颖,李传龙.基于Bi-MIMICS模型的GNSS-R农作物生物量监测理论研究[J].遥感技术与应用,2012,27(2):220-230. DOI:10.1109/igarss.2012.6352719
WU X R, LI Y, LI C L. Research on crop biomass monitoring using GNSS-R technique based on Bi-MIMICS model[J]. Remote Sensing Technology and Application, 2012, 27(2): 220-230. (in Chinese with English abstract)
doi: 10.1109/igarss.2012.6352719
[1] 白岗栓,杜社妮,苗庆丰. 抽穗期补充灌溉对河套灌区地膜春小麦生长的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 21-31.
[2] 白岗栓,邹超煜,杜社妮. 渭北旱塬苹果密植栽培模式对土壤水分的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 308-318.
[3] 白岗栓,耿伟,何登峰. 保水剂施用量对秦巴山区土壤特性及烤烟生长的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 343-354.
[4] 侯贤清, 李荣, 何文寿, 代晓华, 马琨, 梁熠, 马刚成. 保水剂施用量对土壤水分利用及马铃薯生长的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 558-566.
[5] 李明霞1, 杜社妮2,3, 白岗栓2,3, 耿桂俊4. 苹果树更新修剪对土壤水分及树体生长的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 467-476.
[6] 张蕊,耿桂俊,白岗栓,杜社妮. 保水剂施用方式对土壤水热及春小麦生产的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(2): 211-219.
[7] 杜社妮 赵世伟 白岗栓 . 沃特和PAM对土壤水分及玉米生长的影响[J]. 浙江大学学报(农业与生命科学版), 2008, 34(1): 81-88.
[8] 裘正军  何勇  葛晓峰  冯雷. 基于GPS定位的土壤水分快速测量仪的研制[J]. 浙江大学学报(农业与生命科学版), 2003, 29(2): 135-138.