Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 234-240    DOI: 10.3785/j.issn.1008-973X.2019.02.005
能源工程     
水平板上固着碳纳米管燃油液滴的蒸发特性
孙潮1(),梅德清1,*(),徐行1,李立昌1,袁银男2
1. 江苏大学 汽车与交通工程学院,江苏 镇江 212013
2. 苏州大学 能源学院,江苏 苏州 215006
Evaporation characteristics of sessile droplet for fuel with CNT on a heated substrate
Chao SUN1(),De-qing MEI1,*(),Xing XU1,Li-chang LI1,Yin-nan YUAN2
1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
2. School of Energy, Soochow University, Suzhou 215006, China
 全文: PDF(917 KB)   HTML
摘要:

以正十四烷(C14)为基液,表面活性剂溴化十六烷三甲基铵(CTAB)为助溶剂,采用两步法配制分别含有20、50 nm碳纳米管(CNT)的纳米燃油. 分析比较基液燃油与纳米燃油的黏度特性,采用接触角测量仪记录燃油液滴在加热平板上的蒸发变形,探究不同粒径及质量浓度的CNT对正十四烷燃油液滴蒸发特性的影响. 研究表明,纳米粒子的加入增加了基液的黏度,并且黏度随着纳米粒子质量浓度增大或粒径减小而增加. CNT纳米燃油液滴蒸发过程符合部分润湿状态下单组分液滴蒸发的一般规律. 在液滴蒸发定接触线阶段,纳米燃油导热系数增强,液滴从外界吸收的热量加快向液体内部传递,延滞了液滴边缘处(三相线处)液体分子的挥发. 纳米粒子在液滴边缘处沉积,阻滞了接触线向内收缩,增加了液滴在定接触线阶段蒸发的持续时间,纳米燃油在此阶段的蒸发速率比基液燃油低,且蒸发速率的差异随燃油中纳米粒子数量的增多而加大. 在定接触角与混合蒸发阶段,“自销钉”效应阻滞接触线收缩,液滴与底板的接触面积较大,液滴中纳米粒子质量浓度的增加使液滴吸收更多的热量,在后2个蒸发阶段,纳米燃油的蒸发速率明显加快,大于基液燃油的蒸发速率. 在整个蒸发过程中,纳米燃油的平均蒸发速率高于基液燃油.

关键词: 碳纳米管燃油液滴蒸发加热平板    
Abstract:

Nano-fuel with 20 nm and 50 nm carbon nanotubes (CNTs) was prepared by two step method using C14 as base fuel and cetyltrimethyl ammonium bromide (CTAB) as cosolvent. The viscosity characteristics of CNT nano-fuel with various mass fractions were evaluated. The influence of particle size and mass concentration of CNT on the evaporation characteristics of C14 fuel sessile droplets on a heated substrate was investigated experimentally, using contact angle goniometer for shape analysis of fuel droplets. Results showed that the viscosity increased with the increase of mass fraction and the decrease of particle size. The evaporation process of CNT nano-fuel droplets accorded with the general evaporation law of single-component droplet under partial wetting condition. In the constant contact line phase, the heat transfer coefficient of nano-fuel increased, the heat transfer from the outside to the inside was accelerated, which delayed the volatilization of fuel molecules located in the triple contact line (gas-liquid-solid). The sedimentation of nanoparticles in the edge of droplet blocked the contraction of the contact line and increased the duration time of the evaporation at the constant contact line phase. As a result, the evaporation rate of nano-fuel droplet was lower than that of base fuel, and the difference in evaporation rate was larger with the increasing number of nanoparticles in fuel. At the phases of constant contact angle and hybrid evaporation, the " pinned effect” of nanoparticle blocked the contraction of the contact line, the contact area of nano-fuel was larger than that of base fuel, and the increase in the mass fraction of nanoparticles caused the droplet to absorb more heat, therefore, the droplet evaporation rate of nano-fuel droplet was obviously larger than that of base fuel in the last two phases. In summary, the average evaporation rate of nano-fuel is higher than that of base fuel for the whole evaporation.

Key words: carbon nano-tube(CNT)    fuel    droplet    evaporation    heated substrate
收稿日期: 2018-02-04 出版日期: 2019-02-21
CLC:  TK 421  
通讯作者: 梅德清     E-mail: 1318999022@qq.com;meideqing@ujs.edu.cn
作者简介: 孙潮(1994—),女,硕士生,从事纳米燃油研究. orcid.org/0000-0002-3437-9085. E-mail: 1318999022@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙潮
梅德清
徐行
李立昌
袁银男

引用本文:

孙潮,梅德清,徐行,李立昌,袁银男. 水平板上固着碳纳米管燃油液滴的蒸发特性[J]. 浙江大学学报(工学版), 2019, 53(2): 234-240.

Chao SUN,De-qing MEI,Xing XU,Li-chang LI,Yin-nan YUAN. Evaporation characteristics of sessile droplet for fuel with CNT on a heated substrate. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 234-240.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.005        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/234

类别 dCNT/nm w/% ρ/(g·cm?3 S/(m2·g?1
CNT20 10~30 >98 1.81 >200
CNT50 30~60 >98 1.82 >110
表 1  纳米粒子的主要参数
图 1  C14和CNT纳米燃油的黏度
图 2  液滴蒸发可视化装置示意图
图 3  部分润湿状态下固着液滴蒸发示意图
图 4  基液燃油液滴蒸发图像
图 5  质量浓度为50 mg/L,粒子粒径为20 nm的纳米燃油蒸发图像
ρCNT/(mg·L?1 te
CNT20 CNT50
0 5.7 5.7
50 4.5 4.7
100 3.8 4.0
150 3.1 3.7
表 2  燃油液滴有效蒸发时间
图 7  纳米燃油液滴蒸发过程中的接触角
图 6  粒径为20 nm的不同质量浓度及质量浓度为150 mg/L的不同粒径的CNT纳米燃油液滴无量纲接触直径和时间的关系
图 8  粒径为20 nm的不同质量浓度的CNT纳米燃油液滴无量纲质量与无量纲质量变化率随时间的变化
图 9  质量浓度为150 mg/L的不同粒径的CNT纳米燃油无量纲质量与无量纲质量变化率随时间的变化
1 SAXENA V, KUMAR N, SAXENA V K A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 563- 588
doi: 10.1016/j.rser.2016.11.067
2 KUMAR S, DINESHA P, BRAN I Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: an experimental analysis[J]. Energy, 2017, 140: 98- 105
doi: 10.1016/j.energy.2017.08.079
3 王亮, 张新塘, 朱新绪, 等 纳米CeO2、Fe燃油添加剂对柴油机性能影响的研究 [J]. 柴油机, 2017, 39 (5): 17- 22
WANG Liang, ZHANG Xin-tang, ZHU Xin-xu, et al Study on the effect of nanoscale CeO2 and Fe fuel additives on diesel engine performance [J]. Diesel Engine, 2017, 39 (5): 17- 22
doi: 10.3969/j.issn.1001-4357.2017.05.004
4 GUMUS S, OZCAN H, OZBEY M, et al Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine[J]. Fuel, 2016, 163: 80- 87
doi: 10.1016/j.fuel.2015.09.048
5 BASHA J S, ANAND R B Performance, emission and combustion characteristics of a diesel engine using carbon nanotubes blended jatropha methyl ester emulsions[J]. Alexandria Engineering Journal, 2014, 53 (2): 259- 273
doi: 10.1016/j.aej.2014.04.001
6 王琪, 朱宝忠, 孙运兰, 等 乙醇基纳米流体燃料液滴着火燃烧研究[J]. 燃烧科学与技术, 2017, 23 (5): 465- 470
WANG Qi, ZHU Bao-zhong, SUN Yun-lan, et al Ignition and combustion characteristics of ethonal based nanofluid droplets[J]. Journal of Combustion Science and Technology, 2017, 23 (5): 465- 470
7 KIM Y C Evaporation of nanofluid droplet on heated surface[J]. Advances in Mechanical Engineering, 2015, 7 (4): 1- 8
8 郭亚丽. 纳米流体固着液滴蒸发等流动与传热问题的LBM分析[D]. 大连: 大连理工大学, 2009.
GU Ya-li. Study of flow and heat transfer in the proeess such as evaporation of nanofluid sessile droplet with LBM [D]. Dalian: Dalian University of Technology, 2009.
9 刘剑洪, 吴双泉, 何传新, 等 碳纳米管和碳微米管的结构、性质及其应用[J]. 深圳大学学报理工版, 2013, 30 (1): 1- 11
LIU Jian-hong, WU Shuang-quan, HE Chuan-xin, et al Structure, property and application of carbon nanotubes and carbon microtubes[J]. Journal of Shenzhen University Science and Engineering, 2013, 30 (1): 1- 11
10 陈强, 黄永华, 翁捷敏, 等 碳纳米管本征热导率的研究进展[J]. 化工新型材料, 2013, 41 (11): 1- 4
CHEN Qiang, HUANG Yong-hua, WENG Jie-min, et al Advance on the intrinsic conductivity of carbon nanotubes[J]. New Chemical Materials, 2013, 41 (11): 1- 4
doi: 10.3969/j.issn.1006-3536.2013.11.001
11 李晓东, 杨荣杰 碳纳米管催化二硝酰胺铵燃烧和热分解[J]. 新型炭材料, 2010, 25 (6): 444- 448
LI Xiao-dong, YANG Rong-jie Combustion and thermal decomposition of ammonium dinitramide catalyzed by carbon nanotubes[J]. New Carbon Materials, 2010, 25 (6): 444- 448
12 JADAV M, NAIR N, PATEL R, et al Investigation of drying mechanism in evaporating micellar nanofluid drops[J]. Journal of Nanofluids, 2016, 5 (2): 216- 219
doi: 10.1166/jon.2016.1216
13 BHUIYAN M H U, SAIDUR R, AMALINA M A, et al. Effect of nanoparticles concentration and their sizes on surface tension of nanofluids [C]. Bsme International Conference on Thermal Engineering, 2015, 105: 431–437.
14 ALAWI O A, SIDIK N A C, HONG W X, et al Thermal conductivity and viscosity models of metallic oxides nanofluids[J]. International Journal of Heat and Mass Transfer, 2017, 116: 1314- 1325
15 ERBIL H Y Evaporation of pure liquid sessile and spherical suspended drops: a review[J]. Advances in Colloid and Interface Science, 2012, 170 (1/2): 67- 86
16 MOGHIMAN M, ASLANI B Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency[J]. International Journal of Heat and Mass Transfer, 2013, 61 (1): 114- 118
17 BERBER S, KWON Y K, TOMANEK D Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84 (20): 4613
doi: 10.1103/PhysRevLett.84.4613
18 王宝和, 李群 单液滴蒸发研究的现状与展望[J]. 干燥技术与设备, 2014, (4): 25- 31
WANG Bao-he, LI Qun Present status and prospect of studies on single droplet evaporation[J]. Drying Technology and Equipment, 2014, (4): 25- 31
19 SEMENOV S, TRYBALA A, AGOGO H, et al Evaporation of droplets of surfactant solutions[J]. Langmuir the Acs Journal of Surfaces and Colloids, 2013, 29 (32): 10028
doi: 10.1021/la401578v
20 SEFIANE K, SKILLING J, MACGILLIVRAY J Contact line motion and dynamic wetting of nanofluid solutions[J]. Advances in Colloid and Interface Science, 2008, 138 (2): 101- 120
doi: 10.1016/j.cis.2007.12.003
21 CONWAY J, KORNS H, FISCH M R Evaporation kinematics of polystyrene bead suspensions[J]. Langmuir, 1997, 13 (3): 426- 431
doi: 10.1021/la960833w
22 DASH S, GARIMELLA S V Droplet evaporation on heated hydrophobic and superhydrophobic surfaces[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2014, 89 (4): 1- 8
23 DUNN G J, WILSON S K, DUFFY B R, et al The strong influence of substrate conductivity on droplet evaporation[J]. Journal of Fluid Mechanics, 2009, 623 (23): 329- 351
[1] 胡定华,刘诗雨. Al2O3纳米流体液滴撞击壁面的动力学行为数值研究[J]. 浙江大学学报(工学版), 2021, 55(5): 991-998.
[2] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[3] 张井志,陈武铠,周乃香,雷丽,梁福顺. T型微通道内液滴形成过程及长度的实验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 1007-1013.
[4] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.
[5] 程军,刘建峰,张曦,张泽,田江磊,周俊虎,岑可法. 微藻水热提取油脂经脱氧断键制航油[J]. 浙江大学学报(工学版), 2019, 53(2): 214-219.
[6] 蔡维一,袁银男,梅德清,赵晓东. 纳米异质粒子对燃油射流喷雾特性的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2404-2411.
[7] 张亚东, 常春蕊, 张志明, 张好强, 孙红婵, 安立宝. 酸氧化掺金方法改善碳纳米管的电接触特性[J]. 浙江大学学报(工学版), 2018, 52(8): 1624-1630.
[8] 代超, 纪献兵, 周冬冬, 王野, 徐进良. 液滴碰撞不同湿润性表面的行为特征[J]. 浙江大学学报(工学版), 2018, 52(1): 36-42.
[9] 周二振,应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1671-1676.
[10] 徐焕祥,俞小莉,王雷,樊之鹏,窦文博,魏巍,李道飞. 压缩空气-燃油混合动力排气能量回收利用[J]. 浙江大学学报(工学版), 2016, 50(7): 1353-1359.
[11] 谢阳,姚子澍,麻剑,罗麒元,许沧粟. 柴油温度对喷孔内流动特性影响的仿真分析[J]. 浙江大学学报(工学版), 2015, 49(5): 938-943.
[12] 侯霞丽,李晓东,陈彤,陆胜勇,纪莎莎,任咏. 垃圾焚烧飞灰中主要元素的深度分布及形态[J]. 浙江大学学报(工学版), 2015, 49(5): 930-937.
[13] 楼彬, 徐旭, 王文龙, 王宇飞, 范利武, 俞自涛2. 水基碳纳米管纳米流体在矩形腔内的自然对流传热[J]. 浙江大学学报(工学版), 2014, 48(12): 2196-2201.
[14] 肖玉麒, 甘曦梓, 曾轶, 范利武, 洪荣华, 俞自涛, 胡亚才. 碳纳米管填料对相变储能式热沉性能的影响[J]. 浙江大学学报(工学版), 2014, 48(10): 1732-1738.
[15] 肖玉麒,范利武,洪荣华,徐旭,俞自涛,胡亚才. 纳米填料对储能式散热器性能影响的数值研究[J]. J4, 2013, 47(9): 1644-1649.