Please wait a minute...
浙江大学学报(工学版)
能源工程与动力工程     
柴油温度对喷孔内流动特性影响的仿真分析
谢阳1,姚子澍2,麻剑1,罗麒元1,许沧粟1
1.浙江大学 动力机械及车辆工程研究所,浙江 杭州 310027; 2.浙江大学城市学院 工程学院,浙江 杭州 310015
Numerical study on internal nozzle flow characteristic of diesel under hot fuel conditions
XIE Yang1, YAO Zi-shu2, MA Jian1, LUO Qi-yuan1, XU Cang-su1
1.Institute of Power-driven Machinery and Vehicle Engineering, Zhejiang University, Hangzhou 310027, China; 2. School of Engineering Zhejiang University City College, Hangzhou 310015, China
 全文: PDF(1056 KB)   HTML
摘要:

为研究柴油温度对真实喷孔内流动特性的影响,对柴油在喷油嘴喷孔内部的流动进行三维数值仿真.利用计算流体动力学(CFD)软件模拟得到不同燃油温度和背压条件下燃油的质量流量、有效喷射速度、空穴断面分布与无量纲流动参数,并进行分析.结果表明:温度越高,背压越低,更容易进入临界超空穴状态;在进入超空穴状态之后,喷孔内的超空穴现象加剧有效喷射速度的升高,并且随着燃油温度上升,有效速度增加了6%;雷诺数随温度上升而上升,空穴数随着雷诺数的增加而呈指数下降,而流量系数在空穴发展阶段维持不变.

Abstract:

The study was conducted to investigate the change of real internal nozzle flow parameters under hot fuel conditions. According to a model of the conventional six-hole, valve-covered orifice (VCO) diesel injector, three-dimensional numerical simulation of cavitation flow in the nozzle was studied. The mass flow, effective velocity at the outlet, cavitation distribution and non-dimensional flow coefficients under different temperature and pressure conditions were considered in the analysis. The result showed that critical super cavitation conditions are achieved easier when fuel temperature rises or back pressure drops. Affected by internal nozzle super cavitation flow, effective velocity increases rapidly after critical super cavitation, besides, it shows positive correlation to temperature(increased by 6%); Reynolds number rises with the temperature rising, the cavitation number decreases exponentially with increases in the Reynolds numbers, besides, discharge coefficient remain stable without super cavitation flow.

出版日期: 2015-12-26
:  TK 421+.4  
基金资助:

国家自然科学基金资助项目(50976100,51076138)

通讯作者: 许沧粟,男,副教授     E-mail: xcs0929@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

谢阳,姚子澍,麻剑,罗麒元,许沧粟. 柴油温度对喷孔内流动特性影响的仿真分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.05.018.

XIE Yang, YAO Zi-shu, MA Jian, LUO Qi-yuan, XU Cang-su. Numerical study on internal nozzle flow characteristic of diesel under hot fuel conditions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.05.018.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.05.018        http://www.zjujournals.com/eng/CN/Y2015/V49/I5/938

[1] LOCKETT R D, LIBERANI L, THAKER D, et al. The characterization of diesel nozzle flow using high speed imaging of elastic light scattering [J]. Fuel, 2013, 106: 605616.
[2] ROTH H, GIANNADAKIS E, GAVAISES M, et al. Effect of Multi-injection strategy on cavitation development in diesel injector nozzle holes [C]∥Michigan: 2005SAE World Congress, 2005-01-1237.
[3] SALVADOR F J, ROMERO J V, ROSELLO M D, et al. Validation of a code for modeling cavitation in diesel injector nozzles [J]. Mathematical and Computer Modeling, 2010, 52(7/8): 1123-1132.
[4] ALEIFERIS P G, SERRAS-PEREIRA J, AUGOYE A, et al. Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines [J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4588-4606.
[5] 张登攀,袁银南,杜家益,等. 生物柴油自由喷雾的试验研究[J]. 内燃机工程,2010, 31(6): 13-16.
ZHANG Deng-pan, YUAN Yin-nan, DU Jia-yi, et al. Experimental study on bio-diesel free spray [J]. Chinese Internal Combustion Engine Engineering, 2010, 31(6): 13-16.
[6] SEUNG H Y, SU H P, CHANG S L. Experimental investigation on the fuel properties of biodiesel and its blends at various temperatures [J]. Energy and Fuels, 2008, 22(1): 652-656.
[7] 何志霞,袁建平,李德桃. 垂直多孔喷嘴内部流动空穴现象数值模拟分析[J]. 农业机械学报, 2006, 37(2): 48.
HE Zhi-xia, YUAN Jian-pin, LI De-tao, Numerical simulation and analysis of cavitating phenomena in a vertical multi-hole nozzle [J].Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(2): 48.
[8] BRENNEN C E. Cavitation and bubble dynamics [M]. New York: Oxford University Press, 1995.
[9] RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. Philosophical Magazine, 1917, 34(199-04): 94-98.
[10] GUO L J, Fluid Dynamics of Two Phase and Multiphase System [M], Xi’an: Xi’an Jiaotong University Press, 2002.
[11] TAO W Q, Numerical heat transfer [M], Xi’an: Xi’an Jiaotong University Press, 1988.
[12] MOHAMMAD T S-T, MEYSAM S, MORORTEZA G. Numerical study on the effect of the injection pressure on spray penetration length [J]. Applied Mathematical Modeling, 2013, 37(14/15): 7778-7788.
[13] PAYRI F, PAYRI R , SALVADOR F J, et al. A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation [J]. Computers & Fluids, 2012, 58: 88-101.
[14] ALEIFERIS P G, SERRAS-PEREIRA J, AUGOYE G, et al. Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines [J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4588-4606.
[15] GIPRGI M G D, FICARELLA A, TARANTINO M. Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization [J]. International Journal of Heat and Fluid Flow, 2013, 39: 160-172.

No related articles found!