Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 228-233    DOI: 10.3785/j.issn.1008-973X.2019.02.004
能源工程     
PVP改性PDMS/PAN中空纤维复合膜提升表面亲水性
胡磊青(),程军*(),王亚丽,刘建忠,周俊虎,岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification
Lei-qing HU(),Jun CHENG*(),Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(836 KB)   HTML
摘要:

为了改善气体分离复合膜中聚二甲基硅氧烷(PDMS)过渡层与极性分离层的界面结合,利用高极性的聚乙烯吡咯烷酮(PVP)修饰聚丙烯腈(PAN)中空纤维支撑的PDMS气体分离膜表面,以提高PDMS表面极性和亲水性并减少对气体渗透速率的不利影响. 利用X射线光电子能谱(XPS)证实利用溶液浸渍法可以将PVP接枝在PDMS表面对其修饰,并且随着浸渍时间的增加,PVP接枝量逐步增加,修饰效果逐渐增强. 实验结果表明,交联剂1,3,5-苯三甲酰氯(TMC)增强了PDMS表面的PVP接枝改性,PVP修饰使PDMS表面的水接触角降低到21.1°,显著提高了PDMS表面亲水性和极性,从而有利于PDMS层和极性分离层的紧密结合. PVP修饰使得CO2对其他气体(H2、CH4、N2)的选择性随TMC/PDMS摩尔比的增加而逐渐降低,气体选择性CO2/H2、CO2/CH4、CO2/N2的最大峰值分别为3.9、3.8、11.8.

关键词: 气体分离表面修饰渗透率极性    
Abstract:

Polyvinyl pyrrolidone (PVP) with high polarity was adopted to modify the surface of PDMS layer supported on polyacrylonitrile (PAN) hollow fiber, in order to improve the polarity and hydrophily of PDMS layer surface and ensure the minimum negative effect on gas permeability. The employment of PVP was to enhance the interfacial cohesion of polydimethylsiloxane (PDMS) gutter layer and polar selective layer in gas separation composite membrane. X-ray photoelectron spectroscopy (XPS) was utilized to prove that PVP could be grafted to PDMS layer and modify its surface by dip-coating, and the grafting quality and modification of PVP increased and enhanced respectively with the increase of coating time. Results showed that the crosslinker 1,3,5-Benzenetricarbonyl trichloride (TMC) could improve the function of PVP grafting modification, and the surfacewater contact angel decreased to 21.1°, which meant that the surface polarity and hydrophily of PDMS layer were obviously improved and the PDMS layer and polar selective layer were tightly combined. In addition, with the increase of molar ratio of TMC/PDMS, CO2/H2, CO2/CH4 and CO2/N2 selectivity decreased gradually by PVP modification, peaking at 3.9, 3.8 and 11.8, respectively.

Key words: membrane    gas separation    surface modification    permeability    polarity
收稿日期: 2018-01-25 出版日期: 2019-02-21
CLC:  X 511  
通讯作者: 程军     E-mail: leiqinghu@zju.edu.cn;juncheng@zju.edu.cn
作者简介: 胡磊青(1992—),男,博士生,从事CO2减排控制机理研究. orcid.org/0000-0001-8416-0789. E-mail: leiqinghu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡磊青
程军
王亚丽
刘建忠
周俊虎
岑可法

引用本文:

胡磊青,程军,王亚丽,刘建忠,周俊虎,岑可法. PVP改性PDMS/PAN中空纤维复合膜提升表面亲水性[J]. 浙江大学学报(工学版), 2019, 53(2): 228-233.

Lei-qing HU,Jun CHENG,Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN. Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 228-233.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.004        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/228

图 1  材料化学结构式与PAN中空纤维SEM图
MT/P PVP接枝改性 wB/%
Si N
2∶3 改性前 24.12 2.28
改性后 22.59 3.04
10∶3 改性前 22.64 2.22
改性后 16.32 4.58
18∶3 改性前 21.66 2.03
改性后 14.82 7.70
表 1  PVP接枝改性前后PDMS/PAN中空纤维复合膜表面特征元素质量分数变化
图 2  PVP接枝改性前后PDMS/PAN中空纤维复合膜的表面XPS图
图 3  不同TMC/PDMS摩尔比下PVP接枝改性前后PDMS/PAN中空纤维复合膜的表面水接触角
图 4  不同TMC/PDMS摩尔比下PVP接枝改性前后PDMS/PAN中空纤维复合膜的CO2渗透速率
图 5  不同TMC/PDMS摩尔比下PVP接枝改性前后PDMS/PAN中空纤维复合膜的CO2对其他气体的选择性
1 WANG S F, LI X Q, WU H, et al Advances in high permeability polymer-based membrane materials for CO2 separations [J]. Energy and Environmental Science, 2016, 9 (6): 1863- 1890
doi: 10.1039/C6EE00811A
2 LIN H Q, He Z J, Sun Z, et al CO2-selective membranes for hydrogen production and CO2 capture-part II: techno-economic analysis [J]. Journal of Membrane Science, 2015, 493: 794- 806
doi: 10.1016/j.memsci.2015.02.042
3 张智恩. CO2在中空纤维膜内的吸收分离性能及其在PVA促进传递膜内的吸附特性[D]. 重庆: 重庆大学, 2015.
ZHANG Zhi-en. CO2 absorption in a hollow fiber membrane contactor and its sorption characteristics in a PVA facilitated transport membrane [D]. Chongqing: Chongqing University, 2015.
4 KANG Z X, XUE M, FAN L L, et al Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane[J]. Energy and Environmental Science, 2014, 7 (12): 4053- 4060
doi: 10.1039/C4EE02275K
5 全帅. CO2捕集用高性能PEO基气体分离膜的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
QUAN Shuai. Preparation and properties of high performance PEO-based gas separation membranes for CO2 capture [D]. Haerbin: Harbin Institute of Technology, 2015.
6 HUDIONO Y C, CARLISLE T K, LAFRATE A L, et al Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation [J]. Journal of Membrane science, 2011, 370 (1/2): 141- 148
7 YANG L X, TIAN Z Z, ZHANG X Y, et al Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane [J]. Journal of Membrane Science, 2017, 543: 69- 78
doi: 10.1016/j.memsci.2017.08.050
8 BARILLAS M K, ENICK R M, O'BRIEN M, et al The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers [J]. Journal of Membrane Science, 2011, 371 (1/2): 29- 39
9 陈可平, 梁丽芸, 谭必恩 亲二氧化碳碳氢聚合物及其应用[J]. 化学进展, 2009, 21 (10): 2199- 2204
CHEN Ke-ping, LIANG Li-yun, TAN Bi-en CO2-philic hydrocarbon polymers and their applications [J]. Progress in Chemistry, 2009, 21 (10): 2199- 2204
10 CAR A, STROPNIK C, YAVE W, et al PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation [J]. Journal of Membrane Science, 2008, 307 (1): 88- 95
doi: 10.1016/j.memsci.2007.09.023
11 代岩. 氟化/共聚橡胶态聚合物气体分离膜制备及性能研究 [D]. 大连: 大连理工大学, 2017.
DAI Yan. Preparation and performance of fluorinated/copolymerized rubbery polymer gas separation membrane [D]. Dalian: Dalian University of Technology, 2017.
12 QIAO Z H, WANG Z, YUAN S J, et al Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation [J]. Journal of Membrane Science, 2015, 475: 290- 302
doi: 10.1016/j.memsci.2014.10.034
13 王薇, 杜启云 中空纤维复合膜[J]. 高分子通报, 2007, 5: 54- 59
WANG Wei, DU Qi-yun Hollow fiber composite membrane[J]. Polymer Bulletin, 2007, 5: 54- 59
doi: 10.3969/j.issn.1003-3726.2007.05.007
14 ZHOU S Y, ZOU X Q, SUN F X, et al Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation [J]. Journal of Materials Chemistry, 2012, 22 (20): 10322- 10328
doi: 10.1039/c2jm16371c
15 CHENG J, HU L Q, JI C F, et al Porous ceramic hollow fiber-supported Pebax/PEGDME composite membrane for CO2 separation from biohythane [J]. RSC Advances, 2015, 5 (74): 60453- 60459
doi: 10.1039/C5RA10619B
16 HU L Q, CHENG J, LI Y N, et al In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for CO2 separation [J]. Journal of Colloid and Interface Science, 2018, 510: 12- 19
doi: 10.1016/j.jcis.2017.09.048
17 CHEN H Z, THONG Z W, LI P, et al High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation [J]. International Journal of Hydrogen Energy, 2014, 39 (10): 5043- 5053
doi: 10.1016/j.ijhydene.2014.01.047
18 YAVE W, CAR A, WIND J, et al Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture [J]. Nanotechnology, 2010, 21 (39): 395301
19 SHAHSAVAN H, QUINN J, D'EON J, et al Surface modification of polydimethylsiloxane elastomer for stable hydrophilicity, optical transparency and film lubrication[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482: 267- 275
doi: 10.1016/j.colsurfa.2015.05.024
20 AMIRILARGANI M, SADRZADEH M, SUDHOLTER E J R, et al Surface modification methods of organic solvent nanofiltration membranes[J]. Chemical Engineering Journal, 2016, 289: 562- 582
doi: 10.1016/j.cej.2015.12.062
21 XIONG X H, WU Z Q, PAN J J, et al A facile approach to modify poly (dimethylsiloxane) surfaces via visible light-induced grafting polymerization[J]. Journal of Materials Chemistry B, 2015, 3 (4): 629- 634
doi: 10.1039/C4TB01600A
22 FU Y J, QUI H Z, LIAO K S, et al Effect of uv-ozone treatment on poly (dimethylsiloxane) membranes: surface characterization and gas separation performance[J]. Langmuir, 2010, 26 (6): 4392- 4399
doi: 10.1021/la903445x
23 CHEN J T, FU Y J, TUNG K L, et al Surface modification of poly (dimethylsiloxane) by atmospheric pressure high temperature plasma torch to prepare high-performance gas separation membranes[J]. Journal of Membrane Science, 2013, 440: 1- 8
doi: 10.1016/j.memsci.2013.03.058
24 WU Y Z, HUANG Y Y, MA H W A facile method for permanent and functional surface modification of poly (dimethylsiloxane)[J]. Journal of American Chemical Society, 2007, 129 (23): 7226- 7227
doi: 10.1021/ja071384x
25 CEHN H, ZHANG Z, CHENG Y, et al Protein repellant silicone surfaces by covalent immobilization of poly (ethylene oxide)[J]. Biomaterials, 2005, 26 (15): 2391- 2399
doi: 10.1016/j.biomaterials.2004.07.068
26 CHEN H, BROOK M A, SHEARDOWN H Silicone elastomers for reduced protein adsorption[J]. Biomaterials, 2004, 25 (12): 2273- 2282
doi: 10.1016/j.biomaterials.2003.09.023
27 毕秋艳, 田野, 李倩, 等 PVDF中空纤维膜改性研究(1)交联PVP制备亲水化PVDF中空纤维膜[J]. 膜科学与技术, 2012, 32 (6): 22- 27
BI Qiu-yan, TIAN Ye, LI Qian, et al Study on the modification of PVDF membrane (1) preparation of hydrophilic PVDF hollow fiber membrane with PVP via cross-linking reaction[J]. Membrane Science and Technology, 2012, 32 (6): 22- 27
doi: 10.3969/j.issn.1007-8924.2012.06.004
28 LIN H Q, VAN WAGNER E, FREEMAN B D, et al Plasticization-enhanced hydrogen purification using polymeric membranes[J]. Science, 2006, 311 (5761): 639- 642
doi: 10.1126/science.1118079
29 PUTHIARA J P, LEE Y R, AHN W S Microporous amine-functionalized aromatic polymers and their carbonized products for CO2 adsorption [J]. Chemical Engineering Journal, 2017, 319: 65- 74
doi: 10.1016/j.cej.2017.03.001
[1] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.
[2] 吴正海,徐颖强,刘楷安,赵兴. 圆锥滚子轴承滚子/滚道副的脂润滑热成膜性能[J]. 浙江大学学报(工学版), 2020, 54(3): 459-466.
[3] 吴志强,卫军,董荣珍. 石墨烯压阻复合材料及其在裂纹监测中的应用[J]. 浙江大学学报(工学版), 2020, 54(2): 233-240.
[4] 魏颖颖,姜东岳,付清腾,郭飞. 悬浮油滴在改性PAN纤维膜上的行为研究[J]. 浙江大学学报(工学版), 2020, 54(1): 196-201.
[5] 连启祥,杜志叶,金硕,杨知非,黄国栋,阮江军. 采用瞬态上流元法的油纸绝缘瞬态电场研究[J]. 浙江大学学报(工学版), 2019, 53(2): 399-406.
[6] 申屠华斌, 柳景青, 叶萍, 李杭加, 徐兵, 彭宏熙, 王磊. 滞流前后管道生物膜微生物群落径向分布差异[J]. 浙江大学学报(工学版), 2017, 51(7): 1317-1323.
[7] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[8] 柳景青, 罗志逢, 周晓燕, 何晓芳, 任红星, 胡宝兰, 裘尚德. 水流剪切力对供水管道管壁生物膜生长的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 250-256.
[9] 王宇辰, 陈建业, 徐璐, 张小斌. 基于电容法的管内低温流体液膜厚度测量方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1855-1858.
[10] 李秋顺,成荣,张旭霖,陈燕,史建国,李明宇,于永江,董文飞. 聚合物薄膜对表面等离子体共振光谱的调制[J]. 浙江大学学报(工学版), 2015, 49(9): 1796-1804.
[11] 刘敏,刘爱萍,郁建灿,钱国栋. 掺杂及分子修饰对类金刚石细胞相容性的影响[J]. 浙江大学学报(工学版), 2015, 49(9): 1790-1795.
[12] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[13] 王震, 赵阳, 杨学林. 平面薄膜结构屈曲行为的向量式有限元分析[J]. 浙江大学学报(工学版), 2015, 49(6): 1116-1122.
[14] 陈宇峰, 陈务军, 邱振宇, 赵兵. 空气对预应力薄膜结构模态的影响[J]. 浙江大学学报(工学版), 2015, 49(6): 1123-1127.
[15] 万益, 黄薇薇, 郑成航, 高翔, 岑可法. 湿式静电除尘器喷嘴特性[J]. 浙江大学学报(工学版), 2015, 49(2): 336-343.