Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2404-2411    DOI: 10.3785/j.issn.1008-973X.2019.12.019
动力与电气工程     
纳米异质粒子对燃油射流喷雾特性的影响
蔡维一1(),袁银男1,2,梅德清1,*(),赵晓东1
1. 江苏大学 汽车与交通工程学院,江苏 镇江 212013
2. 苏州大学 能源学院,江苏 苏州 215006
Effects of nano-scale heterogeneity on fuel jet spray characteristics
Wei-yi CAI1(),Yin-nan YUAN1,2,De-qing MEI1,*(),Xiao-dong ZHAO1
1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
2. School of Energy, Soochow University, Suzhou 215006, China
 全文: PDF(1476 KB)   HTML
摘要:

选用平均粒径为20 nm的CeO2纳米粒子,以油酸为表面活性剂,采用两步法配制质量浓度分别为50与100 mg/L的纳米燃油,分别称为Ce50和Ce100燃油;测量柴油和纳米燃油的密度、黏度和表面张力等基础物性参数;在高压共轨喷雾试验台上拍摄燃油射流喷雾发展过程的影像,应用Matlab软件处理影像,得到喷雾贯穿距和喷雾锥角等特性参数. 结果表明:与柴油相比,Ce50和Ce100纳米燃油的黏度分别增加了2.1%与4.7%,密度和表面张力的增加量较小. 在相同喷射压力下的不同喷雾发展时刻,纳米燃油的油束贯穿距大于柴油,喷雾锥角略小于柴油. 在背压为2 MPa、喷射压力分别为80、120和160 MPa时,与柴油相比,Ce50纳米燃油的喷雾贯穿距分别增加了1.4、1.9和2.4 mm,Ce100纳米燃油的贯穿距分别增加了2.9、2.9和3.7 mm. 随着喷射压力的提高,纳米燃油与柴油在喷雾贯穿距和喷雾锥角上的差异增大. 当燃油喷射背压增加时,油束的贯穿距缩短而喷雾锥角增大,不同质量浓度纳米燃油和柴油的贯穿距和喷雾锥角的差异有所减小.

关键词: 柴油纳米燃油射流喷雾特性高压共轨    
Abstract:

Nano fuels with mass concentration of 50 and 100 mg/L was prepared by two-step method, using cerium oxide (CeO2) nano particles with mean diameter of 20 nm and taking oleic acid as surfactant, which were named as Ce50 and Ce100 fuel. Some basic physical parameters such as density, viscosity and surface tension of fuel blends were measured. The developing process of fuel injection was captured with images on the high-pressure common rail spray measuring system; then the spray penetration length and cone angle were obtained after the spray images being processed with Matlab software. It is revealed that, compared with diesel, the viscosities of Ce50 and Ce100 nano-fuel blends were increased by 2.1% and 4.7%, respectively, while the density and surface tension were augmented slightly. Almost at each moment of the spray proceeding under one specified injection pressure, the nano-fuel exhibits longer spray penetration length and slightly smaller cone angle than diesel. Compared with diesel, the spray penetration of Ce50 Nano-fuel was increased by 1.4, 1.9 and 2.4 mm and the spray penetration length of Ce100 Nano-fuel was increased by 2.9, 2.9 and 3.7 mm, respectively, at the injection pressure of 80, 120 and 160 MPa under the ambient pressure of 2 MPa. With the rise of injection pressure, the differences in both spray penetration length and cone angle between nano-fuel and diesel are magnified. When the ambient pressure increases, the spray penetration is shortened and the cone angle is magnified; the differences of the spray penetration and the cone angle between diesel and nano-fuel with different mass concentrations are reduced.

Key words: diesel    nano-fuel    jet flow    spray characteristic    high-pressure common rail
收稿日期: 2018-11-15 出版日期: 2019-12-17
CLC:  TK 421  
基金资助: 国家自然科学基金资助项目(51876082,51876133);江苏省科技厅重点研发计划资助项目(BE2016139)
通讯作者: 梅德清     E-mail: caiweiyi_ujs@163.com;meideqing@ujs.edu.cn
作者简介: 蔡维一(1995—),男,硕士生,从事发动机代用燃料研究. orcid.org/0000-0003-1410-2094. Email: caiweiyi_ujs@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
蔡维一
袁银男
梅德清
赵晓东

引用本文:

蔡维一,袁银男,梅德清,赵晓东. 纳米异质粒子对燃油射流喷雾特性的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2404-2411.

Wei-yi CAI,Yin-nan YUAN,De-qing MEI,Xiao-dong ZHAO. Effects of nano-scale heterogeneity on fuel jet spray characteristics. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2404-2411.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.019        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2404

参数 数值 单位
纯度 99.9 %
粒径 20 nm
松装密度 0.22 g/cm3
真实密度 7.13 g/cm3
比表面积 30~50 m2/g
粒子形态 微球形 ?
表 1  CeO2纳米粒子主要参数
燃油 ρ/(g·cm?3 η/(10?3 Pa·s) σ/(10?3 N·m)
Diesel 0.845 1 4.73 26.81
Ce50 0.847 2 4.93 26.93
Ce100 0.847 4 5.15 27.04
表 2  柴油与纳米燃油基本物性参数
图 1  喷雾测试系统示意图
试验工况 ps / MPa pb / MPa 试验工况 ps / MPa pb / MPa
1 80 2 4 120 1
2 120 2 5 120 4
3 160 2 ? ? ?
表 3  环境温度为300 K时的喷雾试验方案
图 2  喷雾图片处理过程
图 3  油束边缘准确性验证
图 4  不同时刻下的柴油、Ce50、Ce100纳米燃油喷雾图像
图 5  不同喷射压力下柴油喷雾的贯穿距
图 6  不同喷射压力下柴油与纳米燃油的喷雾贯穿距
图 7  不同喷射压力下柴油的喷雾锥角
图 8  不同喷射压力下柴油与纳米燃油的喷雾锥角
图 9  不同背压下柴油的贯穿距
图 10  不同背压下柴油与纳米燃油的喷雾贯穿距
图 11  不同背压下柴油的喷雾锥角
图 12  不同背压下柴油与纳米燃油喷雾锥角
1 CHOI S U S, EASTMAN J A Enhancing thermal conductivity of fluids with nanoparticles[J]. Developments and Applications of Non-Newtonian Flows, 1995, 66: 99- 105
2 邬齐敏, 孙平, 梅德清, 等 纳米燃油添加剂CeO2提高柴油燃烧效率减少排放 [J]. 农业工程学报, 2013, 29 (9): 64- 69
WU Qi-min, SUN Ping, MEI De-qing, et al Nano-fuel additive CeO2 on promoting efficient combustion and reducing emissions of diesel engine [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29 (9): 64- 69
3 LENIN M A, SWAMINATHAN M R, KUMARESAN G Performance and emission characteristics of a DI diesel engine with a nano-fuel additive[J]. Fuel, 2013, 109 (7): 362- 365
4 SUNGUR B, TOPALOGLU B, OZCAN H Effects of nanoparticle additives to diesel on the combustion performance and emissions of a flame tube boiler[J]. Energy, 2016, 113: 44- 51
doi: 10.1016/j.energy.2016.07.040
5 ZHANG Y J, XU Y H, YANG Y B, et al Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives[J]. Industrial Lubrication and Tribology, 2015, 67 (3): 227- 232
doi: 10.1108/ILT-10-2012-0098
6 袁银南, 陈汉玉, 张春丰, 等 生物柴油喷雾特性试验[J]. 农业机械学报, 2008, 39 (7): 1- 4
YUAN Yin-nan, CHEN Han-yu, ZHANG Chun-feng, et al Experimental study on spray characteristics of biodiesel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39 (7): 1- 4
7 HUO M, LIN S L, LIU H F, et al Study on the spray and combustion characteristics of water-emulsified diesel[J]. Fuel, 2014, 123 (1): 218- 229
8 OOI J B, ISMAIL H M, SWAMY V, et al Graphite oxide nanoparticles as diesel fuel additive for cleaner emissions and lower fuel consumption[J]. Energy and Fuels, 2016, 30 (2):
9 彭小飞, 俞小莉, 夏立峰, 等 纳米流体悬浮稳定性影响因素[J]. 浙江大学学报: 工学版, 2007, 41 (4): 577- 580
PENG Xiao-fei, YU Xiao-li, XIA Li-feng, et al Influence factors on suspension stability of nanofluids[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (4): 577- 580
10 MAO C, ZOU H F, ZHOU X, et al Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding[J]. International Journal of Advanced Manufacturing Technology, 2014, 71 (9-12): 2073- 2081
doi: 10.1007/s00170-014-5642-9
11 BALAMURUGAN S, SAJITH V Experimental investigation on the stability and abrasive action of cerium oxide nanoparticles dispersed diesel[J]. Energy, 2017, 113: 113- 124
12 缪雪龙, 郑金保, 洪建海, 等 交叉喷孔喷油嘴喷雾特性的试验[J]. 内燃机学报, 2012, 30 (5): 435- 439
MIAO Xue-long, ZHENG Jin-bao, HONG Jian-hai, et al Spray characteristics of crossing hole in diesel nozzle[J]. Transactions of Chinese Society for Internal Combustion Engines, 2012, 30 (5): 435- 439
13 赵宏中, 张彦超 基于Canny边缘检测算子的图像检索算法[J]. 电子设计工程, 2010, 18 (2): 75- 77
ZHAO Hong-zhong, ZHANG Yan-chao Image retrieval algorithm based on Canny edge detection operator[J]. Electronic Design Engineering, 2010, 18 (2): 75- 77
doi: 10.3969/j.issn.1674-6236.2010.02.027
14 SHERVANITABAR M T, SHEYKHVAZAYEFI M, GHORBANI M Numerical study on the effect of the injection pressure on spray penetration length[J]. Applied Mathematical Modeling, 2013, 37 (14): 7778- 7788
[1] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[2] 吕俊翔, 刘军恒, 孙平, 苏雯博, 孟建, 万垚峰. 荷电反应器状态对柴油机颗粒荷质比的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2414-2419.
[3] 刘长铖, 李文辉, 张文平, 夏文, 张子鉴, 周耀锋. 大型船用柴油机余热利用系统性能研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2259-2264.
[4] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[5] 徐辉, 蔡忆昔, 李小华, 施蕴曦, 李伟俊 . 低温等离子体降低柴油机微粒和NOx排放试验研究[J]. 浙江大学学报(工学版), 2016, 50(12): 2418-2423.
[6] 方珍龙,康勇,王晓川,刘文川,李登,周勇祥. 腔径比对亥姆赫兹自振射流性能影响[J]. 浙江大学学报(工学版), 2016, 50(11): 2100-2106.
[7] 于谦, 李铁柱, 任彦铭. 乘客载重量对柴油公交车尾气排放影响分析[J]. 浙江大学学报(工学版), 2016, 50(10): 2009-2017.
[8] 谢阳,罗麒元,麻剑,许沧粟. 喷油嘴喷孔内流动特性数值仿真与试验分析[J]. 浙江大学学报(工学版), 2016, 50(1): 111-115.
[9] 麻剑, 谢阳, 罗麒元, 许沧粟. 精制生物油和柴油混合燃料的柴油机性能[J]. 浙江大学学报(工学版), 2015, 49(4): 632-637.
[10] 訚耀保, 付嘉华, 金瑶兰. 射流管伺服阀前置级冲蚀磨损数值模拟[J]. 浙江大学学报(工学版), 2015, 49(12): 2252-2260.
[11] 方奕栋, 楼狄明, 胡志远, 谭丕强. 连续再生颗粒捕集器对生物柴油发动机颗粒及NOx排放的影响[J]. 浙江大学学报(工学版), 2015, 49(10): 1836-1841.
[12] 谢阳, 麻剑, 罗麒元, 许沧粟. 油酸甲酯-柴油混合燃料排放特性试验研究[J]. 浙江大学学报(工学版), 2015, 49(10): 1849-1854.
[13] 肖龙洲,龙新平. 吸入室角度对环形射流泵空化性能的影响[J]. 浙江大学学报(工学版), 2015, 49(1): 123-129.
[14] 姚水良,赵一帆,张媛,倪洁操,吴祖良. 多层介质阻挡放电处理柴油机尾气颗粒物[J]. 浙江大学学报(工学版), 2015, 49(1): 157-161.
[15] 郑超,徐羽贞,黄逸凡,刘振,闫克平. 脉冲等离子体射流杀灭表面和水中的细菌[J]. 浙江大学学报(工学版), 2014, 48(7): 1329-1335.