Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2396-2403    DOI: 10.3785/j.issn.1008-973X.2019.12.018
动力与电气工程     
采用能量有限元分析的高速列车车内噪声预测
代文强,郑旭*(),郝志勇,邱毅
浙江大学 能源工程学院,浙江 杭州 310058
Prediction of high-speed train interior noise using energy finite element analysis
Wen-qiang DAI,Xu ZHENG*(),Zhi-yong HAO,Yi QIU
College of Energy Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1602 KB)   HTML
摘要:

采用能量有限元分析(EFEA)并引入车体隔声效应建立高速列车(HST)车厢结构和声腔模型,综合考虑机械激励和声激励源,预测分析车内全频噪声. 通过试验及仿真计算获取模型结构和声腔参数;采用多体动力学仿真、声学有限元法和非线性声学方法求解得到车外激励源,包括轮轨力、二系悬挂力、轮轨噪声和气动噪声. 通过验证激励源频谱结果的声压级(SPL)峰值频率保证激励源的准确性. 将模型参数和激励源施加到车内噪声EFEA模型上,并预测不同区域的车内噪声。将车内声腔各区域的预测与搭载试验车内噪声SPL进行对比,结果显示,仿真与试验车内噪声声压级在分析频段内的变化趋势基本一致,声压级总值(OASPL)误差小于3 dB(A). 由此验证了提出的方法对于HST车内全频噪声仿真预测的有效性和准确性.

关键词: 高速列车(HST)车内噪声能量有限元分析(EFEA)隔声效应声学有限元法    
Abstract:

The carriage structural and sound cavity models of a high-speed train (HST) were established based on energy finite element analysis (EFEA) and structural insulation effect for full-spectrum interior noise analysis, considering the mechanical excitation and harmonic excitation sources comprehensively. Then, the model structure and sound cavity parameters were obtained by experiments and simulation calculation. The exterior excitation sources, including wheel-rail contact force, secondary suspension force, wheel-rail noise and aerodynamic noise, were obtained by multi-body dynamic calculation, acoustic finite element method and nonlinear acoustic solver. In order to validate the accuracy of excitation sources, the frequency bands of sound pressure level (SPL) peaks were verified. The model parameters and excitation sources were applied to interior noise EFEA models, and the interior noise in different regions was predicted. The predicted SPL of interior noise in different regions was compared with on-line experimental results, which indicates that the tendencies of simulation and experimental SPL of interior noise are in good agreement in the analytical frequency bands, and the error of overall sound pressure level (OASPL) is less than 3 dB(A). Thus, the proposed method is validated to be efficient and accurate in predicting full-spectrum interior noise of HST.

Key words: high-speed train (HST)    interior noise    energy finite element analysis (EFEA)    insulation effect    acoustic finite element method
收稿日期: 2018-11-15 出版日期: 2019-12-17
CLC:  TB 532  
基金资助: 国家自然科学基金资助项目(51705454);中央高校基本科研业务费项目(2019QNA4014)
通讯作者: 郑旭     E-mail: zhengxu@zju.edu.cn
作者简介: 代文强(1991—),男,博士生,从事高速列车振动噪声与控制研究. orcid.org/0000-0003-1948-2428. E-mail: wqdai@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
代文强
郑旭
郝志勇
邱毅

引用本文:

代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.

Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.018        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2396

图 1  高速列车能量有限元(EFEA)模型
图 2  车内声腔内损耗因子(ILF)测试结果
图 3  车厢铝型材板件结构阻尼测试结果
图 4  车窗、木质和玻璃间壁隔声量(STL)测试结果
图 5  车厢结构STL预测模型及结果
车体物理量 数值 单位 悬挂物理量 数值 单位
质量 38.9 t 一系纵向刚度 919.8 kN / m
侧滚惯量 125.9 t?m2 一系横向刚度 919.8 kN / m
点头惯量 1 905.3 t?m2 二系横向刚度 125 kN / m
摇头惯量 1 797.9 t?m2 二系垂向刚度 195 kN / m
重心高度 1.656 m 二系垂向阻尼 10 kN?s / m
表 1  拖车车厢部分刚性多体动力学参数
图 6  列车垂向轮轨接触力和二系悬挂力频谱结果
图 7  车轮、轨道有限元模型(FEMs)及噪声预测模型
结构 Er/GPa μr ρr /(kg·m?3) wr /m hr /m
车轮 210 0.30 7 800 ? ?
钢轨 210 0.30 7 850 ? ?
轨道板 42 0.17 2 500 2.8 0.3
砂浆 7 0.17 2 400 2.8 0.3
表 2  轮轨材料及结构参数
图 8  轮轨噪声在车厢表面形成的声激励
图 9  气动噪声预测模型及结果
图 10  能量有限元分析(EFEA)模型激励加载示意图
图 11  车厢中部车内噪声预测与试验结果对比
图 12  车厢前、后端车内噪声预测与试验结果对比
图 13  车内声腔噪声声压级分布(630 Hz)
1 JIN X Key problems faced in high-speed train operation[J]. Journal of Zhejiang University: Science A, 2014, 15 (12): 936- 945
2 毛杰, 郝志勇, 孙强, 等 多物理场耦合激励下的高铁车内噪声分析[J]. 天津大学学报: 自然科学与工程技术版, 2015, 48 (3): 240- 245
MAO Jie, HAO Zhi-yong, SUN Qiang, et al High-speed train interior noise analysis under multi-physical-field coupled excitations[J]. Journal of Tianjin University: Science and Technology, 2015, 48 (3): 240- 245
3 谢素明, 付亚兰, 王悦东, 等 铁路客车结构—声耦合系统的声学特性[J]. 大连交通大学学报, 2008, 29 (5): 40- 44
XIE Su-ming, FU Ya-lan, WANG Yue-dong, et al Acoustic property of structure-acoustic coupling system for rail car[J]. Journal of Dalian Jiaotong University, 2008, 29 (5): 40- 44
doi: 10.3969/j.issn.1673-9590.2008.05.008
4 刘太祥, 龚兴龙, 宗路航, 等 高速列车车体结构振动和车内声学特性分析[J]. 噪声与振动控制, 2013, 33 (3): 101- 105
LIU Tai-xiang, GONG Xing-long, ZONG Lu-hang, et al Analysis of structural vibration and internal acoustical characteristics of high-speed passenger train[J]. Noise and Vibration Control, 2013, 33 (3): 101- 105
5 韩铁礼, 赵蔷薇, 郭涛, 等 基于SEA高速列车车内噪声计算[J]. 大连交通大学学报, 2015, 36 (6): 10- 14
HAN Tie-li, ZHAO Qiang-wei, GUO Tao, et al Calculation of noise in high-speed train based on SEA[J]. Journal of Dalian Jiaotong University, 2015, 36 (6): 10- 14
doi: 10.11953/j.issn.1673-9590.2015.06.010
6 FORSSéN J, TOBER S, CORAKCI AC, et al Modelling the interior sound field of a railway vehicle using statistical energy analysis[J]. Applied Acoustics, 2012, 73 (4): 307- 311
doi: 10.1016/j.apacoust.2011.09.012
7 ZHANG J, XIAO X, SHENG X, et al SEA and contribu-tion analysis for interior noise of a high speed train[J]. Applied Acoustics, 2016, 112: 158- 170
doi: 10.1016/j.apacoust.2016.05.019
8 ZHANG G, VLAHOPOULOS N. Validation of an EFEA formulation for computing the vibrational response of complex structures [J/OL]. SAE Technical Papers, 2007, 2007-01-2324. https://doi.org/10.4271/2007-01-2324.
9 ZHANG W, RAVEENDRA ST. Interior noise prediction based on energy finite element method [J/OL]. [2015-11-15]. SAE Technical Paper, 2005. https://doi.org/10.4271/2005-01-2332.
10 SBRAGIO R, WANG A, VLAHOPOULOS N, et al. Structure-borne vehicle analysis using a hybrid finite element method [J/OL]. [2018-11-15]. SAE Technical Paper, 2009. https://doi.org/10.4271/2009-01-2196.
11 WANG A, VLAHOPOULOS N Vehicle NVH analysis using EFEA & EBEA methods[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2009, 2 (2009-01-0766): 814- 821
12 CHEN S, WANG D, LI W, at al. Automobile interior noise prediction based on energy finite element method [J/OL]. [2018-11-15]. SAE Technical Paper, 2011. https://doi.org/10.4271/2011-01-0507.
13 陈书明, 王登峰, 谭刚平, 等 基于能量有限元方法的声腔内部噪声预测[J]. 吉林大学学报: 工学版, 2012, 42 (2): 303- 308
CHEN Shu-ming, WANG Deng-feng, TAN Gang-ping, et al Prediction of cavity interior noise based on energy finite element method[J]. Journal of Jilin University: Engineering and Technology Edition, 2012, 42 (2): 303- 308
14 VLAHOPOULOS N, ZHANG G, BROPHY W, et al. Vehicle airborne noise analysis using the energy finite el-ement method [J/OL]. [2018-11-15]. SAE Technical Paper, 2013. https://doi.org/10.4271/2013-01-1998.
15 WASHINGTON J, VLAHOPOULOS N, SBRAGIO R, et al. Interior aircraft noise computations due to TBL excitation using the energy finite element analysis [J/OL]. [2018-11-15]. SAE Technical Paper, 2009. https://doi.org/10.4271/2009-01-2248.
16 BLOSS B, RAO M Estimation of frequency-averaged loss factors by the power injection and the impulse re-sponse decay methods[J]. The Journal of the Acoustical Society of America, 2005, 117 (1): 240- 249
doi: 10.1121/1.1835512
17 罗乐, 郑旭, 郝志勇, 等 基于结构-声耦合法研究高铁铝型材的隔声性能[J]. 中南大学学报:自然科学版, 2015, 46 (9): 3513- 3519
LUO Le, ZHENG Xu, HAO Zhi-yong, et al Sound in-sulation performance analysis of high-speed train alu-minum extrusions based on structure-sound coupling method[J]. Journal of Central South University: Sci-ence and Technology, 2015, 46 (9): 3513- 3519
18 罗乐. 高速列车多物理场激励源与车内全频噪声的预测研究[D]. 杭州: 浙江大学, 2017: 127-129.
LUO Le. Investigation and prediction on high-speed train multi-physical-field excitations and full-spectrum interior noise[D]. Hangzhou: Zhejiang University, 2017: 127–129.
19 MELLET C, LéTOURNEAUX F, POISSON F, et al High speed train noise emission: latest investigation of the aerodynamic/rolling noise contribution[J]. Journal of Sound and Vibration, 2006, 293 (3-5): 535- 546
doi: 10.1016/j.jsv.2005.08.069
[1] 孙艳红,张捷,韩健,高阳,肖新标. 高速列车风道消声器传声特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1389-1397.